Skip to main content
Log in

In Vitro Neuroprotective Effect of Shikimic Acid Against Hydrogen Peroxide-Induced Oxidative Stress

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Shikimic acid (SA), originally extracted from Illicium verum Hook. fil., is an indispensable starting material for the synthesis of the antiviral drug Oseltamivir (Tamiflu®) with very limited number of studies regarding its biological effects in vitro. Therefore, we here evaluated the thermoanalytical profile, redox properties, and in vitro effects of SA on human neuronal-like cells (SH-SY5Y). The thermoanalytical profile of SA was studied by using differential scanning calorimetry (DSC) and thermogravimetry/derivative thermogravimetry (TG/DTG) characterization. Both antioxidant potential and in vitro lipoperoxidation levels were analyzed. Cell viability and intracellular reactive species (RS) production was determined by DCF and SRB assays, respectively. Our results show in vitro antioxidant activity of SA without exerting cytotoxic effects on SH-SY5Y cells at tested concentrations of 10 nM, 10 μM, and 10 mM. In addition, SA protected the cells against H2O2-induced toxicity; effect that could be related, at least in part, with decreased intracellular RS production and its antioxidant potential. The present study shows evidence for neuroprotective actions of SA against oxidative stress-induced toxicity on SH-SY5Y cells, inviting for further investigation about its potential use in the context of oxidative stress-associated neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Araújo AAS, Storpirtis S et al (2003) Thermal analysis of the antiretroviral zidovudine (AZT) and evaluation of the compatibility with excipients used in solid dosage forms. Int J Pharm 260(2):303–314

    Article  PubMed  Google Scholar 

  • Barak V, Halperin T et al (2001) The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I. Inflammatory cytokines. Eur Cytokine Netw 12(2):290–296

    CAS  PubMed  Google Scholar 

  • Benmalek Y, Yahia OA et al (2013) Anti-microbial and anti-oxidant activities of Illicium verum, Crataegus oxyacantha ssp monogyna and Allium cepa red and white varieties. Bioengineered 4(4):244–248

    Article  PubMed Central  PubMed  Google Scholar 

  • Bertelli AA, Giovannini L et al (1996) Antiplatelet activity of cis-resveratrol. Drugs Exp Clin Res 22(2):61–63

    CAS  PubMed  Google Scholar 

  • Bertelli AA, Mannari C et al (2008) Immunomodulatory activity of shikimic acid and quercitin in comparison with oseltamivir (Tamiflu) in an in vitro model. J Med Virol 80(4):741–745

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cheung Y-T, Lau WK-W et al (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. NeuroToxicology 30(1):127–135

    Article  CAS  PubMed  Google Scholar 

  • Coleman WF (2005) Shikimic acid. J Chem Educ 82(4):656

    Article  CAS  Google Scholar 

  • da Frota Junior ML, Pires AS et al (2011) In vitro optimization of retinoic acid-induced neuritogenesis and TH endogenous expression in human SH-SY5Y neuroblastoma cells by the antioxidant Trolox. Mol Cell Biochem 358(1-2):325–334

  • Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  CAS  PubMed  Google Scholar 

  • Dresch MT, Rossato SB et al (2009) Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal Biochem 385(1):107–114

    Article  CAS  PubMed  Google Scholar 

  • Ducati RG, Basso LA et al (2007) Mycobacterial shikimate pathway enzymes as targets for drug design. Curr Drug Targets 8(3):423–435

    Article  CAS  PubMed  Google Scholar 

  • El-Seedi HR, Ringbom T et al (2003) Constituents of Hypericum laricifolium and their cyclooxygenase (COX) enzyme activities. Chem Pharmaceut Bull 51(12):1439–1440

    Article  CAS  Google Scholar 

  • Estevez AM, Estevez RJ (2012) A short overview on the medicinal chemistry of (−)-shikimic acid. Mini Rev Med Chem 12(14):1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476(2):107–112

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Huang FY, Xiu QP et al (2002) Anti-platelet and anti-thrombotic effects of triacetylshikimic acid in rats. J Cardiovasc Pharmacol 39(2):262–270

    Article  CAS  PubMed  Google Scholar 

  • Itoigawa M, Ito C et al (2004) Cancer chemopreventive activity of phenylpropanoids and phytoquinoids from Illicium plants. Cancer Lett 214(2):165–169

    Article  CAS  PubMed  Google Scholar 

  • Kamara BI, Brand DJ et al (2004) Phenolic metabolites from honeybush tea (Cyclopia subternata). J Agric Food Chem 52(17):5391–5395

    Article  CAS  PubMed  Google Scholar 

  • Kramer M, Bongaerts J et al (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5(4):277–283

    Article  CAS  PubMed  Google Scholar 

  • Lissi E, Pascual C et al (1992) Luminol luminescence induced by 2,2′-azo-bis(2-amidinopropane) thermolysis. Free Radic Res Commun 17(5):299–311

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Xu QP et al (1999) Antagonistic effects of shikimic acid against focal cerebral ischemia injury in rats subjected to middle cerebral artery thrombosis. Zhongguo Yao Li Xue Bao 20(8):701–704

    CAS  PubMed  Google Scholar 

  • Oliveira AP, Valentao P et al (2009) Ficus carica L.: metabolic and biological screening. Food Chem Toxicol 47(11):2841–2846

    Article  CAS  PubMed  Google Scholar 

  • Pasqua G, Avato P et al (2003) Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Sci 165(5):977–982

    Article  CAS  Google Scholar 

  • Paya M, Halliwell B et al (1992) Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem Pharmacol 44(2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Rabelo TK, Zeidán-Chuliá F et al (2012) Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol In Vitro 26(2):304–314

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans CA, Miller NJ et al (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20(7):933–956

    Article  CAS  PubMed  Google Scholar 

  • Tepe B, Sokmen A (2007) Screening of the antioxidative properties and total phenolic contents of three endemic Tanacetum subspecies from Turkish flora. Bioresour Technol 98(16):3076–3079

    Article  CAS  PubMed  Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5-6):612–616

    Article  CAS  PubMed  Google Scholar 

  • Wojcik A, Podstolski A (2007) Leaf explant response in in vitro culture of St. John’s wort (Hypericum perforatum L.). Acta Physiol Plant 29(2):151–156

    Article  CAS  Google Scholar 

  • Zeidán-Chuliá F, Gelain DP et al (2013) Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev 2013:791795

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Brazilian agencies FAPERGS (No. 0998120), CNPq (PVE, INCTEN, and IBN-Net programs), CAPES, and PROPESQ-UFRGS supported this work. Fares Zeidán-Chuliá holds a PNPD postdoctoral position (Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul) funded by CAPES.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thallita Kelly Rabelo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabelo, T.K., Zeidán-Chuliá, F., Caregnato, F.F. et al. In Vitro Neuroprotective Effect of Shikimic Acid Against Hydrogen Peroxide-Induced Oxidative Stress. J Mol Neurosci 56, 956–965 (2015). https://doi.org/10.1007/s12031-015-0559-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0559-9

Keywords

Navigation