Skip to main content

Advertisement

Log in

Distinct Amygdalar AMPAergic/GABAergic Mechanisms Promote Anxiolitic-Like Effects in an Unpredictable Stress Model of the Hamster

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Studies have pointed to both α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) antagonists and GABAA receptor (GABAAR) agonists as potent antistress agents. In this work, separate subchronic injections of the AMPAR antagonist, 6-ciano-7-nitroquinoxaline-2,3-dione (CNQX), and α1 GABAAR subunit agonist (Zol) within the central amygdala nucleus modified the elevated plus maze performances of hamsters exposed randomly to one of the following stressful conditions: food/water deprivation, forced swimming test, and permanence in cold room. Indeed, stressed hamsters treated with CNQX or Zol displayed a very great (p < 0.001) increase of entrance plus a moderate (p < 0.05) time spent into open arms, respectively. At the cellular level, Zol-treated animals supplied a moderately evident argyrophilic reaction (indicative of neurodegeneration) in the hippocampus while it was absent in the hypothalamus. Interestingly, this reaction was significantly reduced by CNQX supporting its preferential protective role. Furthermore, both agents were responsible for a mixed expression pattern of GluR1 and GluR2 mRNA levels in which Zol overall upregulated GluR1 mRNAs, while they were downregulated by CNQX in the hippocampal oriens-pyramidalis layer and in layer III of the cerebral cortex. These findings support the amygdalar AMPAergic protective response against anxiety states in chronically stressed hamsters, which may constitute useful therapeutic strategies for panic-related mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACS:

Amino cupric silver stain

AMPAR:

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor

Amy:

Amygdala

BDZ:

Benzodiazepine

BlA:

Basolateral amygdala complex

CeA:

Central amygdala nucleus

CNQX:

6-Cyano-7-nitroquinoxaline-2,3-dione

COR:

Cerebral cortex

COR III:

Layer III of the cerebral cortex

CRF:

Corticotrophin-releasing factor

DIG:

Digoxigenin-11-dUTP

EPM:

Elevated plus maze

FST:

Forced swim test

GABAAR:

GABAA receptor

HIP:

Hippocampus

HTH:

Hypothalamus

ISH:

In situ hybridization

NMDARs:

N-methyl-d-aspartate receptors

Or-Py:

Oriens-pyramidalis layer of the hippocampus

VMH:

Ventromedial hypothalamic nucleus

Zol:

Zolpidem

References

  • Alldredge B (2010) Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptide 44:215–224

    Article  CAS  Google Scholar 

  • Alò R, Avolio E, Di Vito A, Carelli A, Facciolo RM, Canonaco M (2010) Distinct α subunits variations of the hypothalamic GABAA receptor triplets (αβγ) are linked to hibernating state in hamsters. BMC Neurosci 11:111–119

    Article  PubMed Central  PubMed  Google Scholar 

  • Alò R, Avolio E, Carelli A, Facciolo RM, Canonaco M (2011) Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters. BMC Neurosci 12:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Alò R, Avolio E, Mele M, Storino F, Canonaco A, Carelli A, Canonaco M (2014) Excitatory/inhibitory equilibrium of the central amygdala nucleus gates anti-depressive and anxiolytic states in the hamster. Pharm Biochem Behav 118:79–86

    Article  Google Scholar 

  • Aston-Jones G, Harris GC (2004) Brain substrates for increased drug seeking during protracted withdrawal. Neuropharmacol 47:167–179

    Article  CAS  Google Scholar 

  • Avolio E, Alò R, Carelli A, Canonaco M (2011) Amygdalar orexinergic-GABAergic interactions regulate anxiety behaviors of the Syrian golden hamster. Behav Brain Res 218:288–295

    Article  CAS  PubMed  Google Scholar 

  • Baghbanzadeh A, Hajinezhad MR, Shohreh B, Maleklou R (2010) Intralateral hypothalamic area injection of isoproterenol and propranolol affects food and water intake in broilers. J Comp Physiol Neuroethol Sens Neural Behav Physiol 196:221–226

    Article  CAS  Google Scholar 

  • Baron MS, Wichmann T, Ma D, DeLong MR (2002) Effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22:592–599

    CAS  PubMed  Google Scholar 

  • Bergink V, Van Megen HJGM, Westenberg HGM (2004) Glutamate and anxiety. Eur Neuropsychopharmacol 14:175–183

    Article  CAS  PubMed  Google Scholar 

  • Bi LL, Wang J, Luo ZY, Chen SP, Geng F, Chen YH, Li SJ, Yann CH, Lin S, Gao TM (2013) Enhanced excitability in the infralimbic cortex produces anxiety-like behaviors. Neuropharmacol 72:148–156

    Article  CAS  Google Scholar 

  • Bueno A, De Olmos S, Heimer L, De Olmos J (2003) NMDA-antagonist MK-801-induced neuronal degeneration in Wistar rat brain detected by the amino-cupric-silver method. Exp Toxicol Pathol 54:319–334

    Article  CAS  PubMed  Google Scholar 

  • Canonaco M, Madeo M, Alò R, Giusi G, Granata T, Carelli A, Canonaco A, Facciolo RM (2005) The histaminergic signaling system exerts a neuroprotective role against neurodegenerative-induced processes in the hamster. J Pharmacol Exp Ther 315:188–195

    Article  CAS  PubMed  Google Scholar 

  • Carlson JN, Haskew R, Wacker J, Maisonneuve IM, Glick SD, Jerussi TP (2001) Sedative and anxiolytic effects of zopiclone’s enantiomers and metabolite. Eur J Pharmacol 415:181–189

    Article  CAS  PubMed  Google Scholar 

  • Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27:2025--2034

  • Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  • Cox BM, Alsawah F, McNeill PC, Galloway MP, Perrine SA (2011) Neurochemical, hormonal, and behavioral effects of chronic unpredictable stresses in the rat. Behav Brain 220:106–111

    Article  CAS  Google Scholar 

  • Da Cunha IC, de Nazareth AM, Vargas JC, Ferraz A, Neto JM, Paschoalini MA, Faria MS (2008) The microinjection of AMPA receptor antagonist into the accumbens shell failed to change food intake, but reduced fear-motivated behavior in free-feeding female rats. Behav Brain Res 193:243–247

    Article  PubMed  Google Scholar 

  • Davis M, Walker DL, Miles L, Grillon C (2010) Phasic vs sustained fear in rats and human: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacol 35:105–135

    Article  Google Scholar 

  • De Kloet ER, Karst H, Joëls M (2008) Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol 29:268–272

    Article  PubMed  Google Scholar 

  • de Olmos JS, Beltramino CA, de O, de Lorenzo S (1994) Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicol Teratol 16:545–561

    Article  PubMed  Google Scholar 

  • Degroit A, Kashluba S, Treit D (2001) Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Pharmacol Biochem Behav 69:391–399

    Article  Google Scholar 

  • Dos-Anjos S, Martinez-Villayandre B, Montori S, Regueiro-Purrinos MM, Gonzalo-Orden JM, Fernández-Lopez A (2009) Global ischemia-induced modifications in the expression of AMPA receptors and inflammation in rat brain. Brain Res 1287:20–27

    Article  CAS  PubMed  Google Scholar 

  • Drevets WC, Price JL, Bardgett ME, Reich T, Todd R, Raichle ME (2002) Glucose metabolism in the amygdale in depression: relationship to diagnostic subtype and stressed plasma cortisol levels. Pharmacol Biochem Behav 71:431–447

    Article  CAS  PubMed  Google Scholar 

  • Ebert B, Anderson NJ, Cremers TI, Rasmussen S, Vogel V, Fahey JM, Sánchez C (2008) Gaboxadol a different hypnotic profile with no tolerance to sleep EEG and sedative effects after repeated daily dosing. Pharmacol Biochem Behav 90:113–122

    Article  CAS  PubMed  Google Scholar 

  • Farhan M, Ikram H, Kanwal S, Pak DJH (2014) Unpredictable chronic mild stress induced behavioral deficits: a comparative study in male and female rats. J Pharmacol Sci 27:879–884

    Google Scholar 

  • Fernandes C, File SE (1996) The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacol Biochem Behav 54:31–40

  • Gerardo-Nava J, Mayorenko II, Grehl T, Steinbusch HW, Weis J, Brook GA (2013) Differential patter of neuroprotection in lumbar, cervical, and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity. J Chem Neuroanat 53:11–17

    Article  CAS  PubMed  Google Scholar 

  • Goffer Y, Xu D, Eberle SE, D’amour J, Lee M, Tukey D, Froemke RC, Ziff EB, Wang J (2013) Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state. J Neurosci 33:19034–19044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gouirand AM, Matuszewich L (2005) The effects of chronic unpredictable stress on male rats in the water maze. Physiol Behav 86:21–31

    Article  CAS  PubMed  Google Scholar 

  • Greenwood AK, Cech JN, Peichel CL (2012) Molecular and developmental contributions to divergent pigment patterns in marine and freshwater sticklebacks. Evol Dev 14:351–362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • GrØnli J, Soulè J, Bramham CR (2014) Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 7:224

    Article  PubMed Central  PubMed  Google Scholar 

  • Gulledge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic trees. J Neurobiol 64:75–90

    Article  CAS  PubMed  Google Scholar 

  • Hagihara H, Ohira K, Toyama K, Miyakawa T (2011) Expression of the AMPA receptor subunits GluR1 and GluR2 is associated with granule cell maturation in the dentate gyrus. Neurosci Res 71:238

    Article  Google Scholar 

  • Haile CN, GrandPre T, Kosten TA (2001) Chronic unpredictable stress, but not chronic predictable stress, enhances the sensitivity to the behavioral effects of cocaine in rats. Psychopharmacol 154:213–220

    Article  CAS  Google Scholar 

  • Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180

    Article  CAS  PubMed  Google Scholar 

  • Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:78–81

    Article  CAS  PubMed  Google Scholar 

  • Huang HJ, Liang KC, Ke HC, Chang YY, Hsieh-Li HM (2011) Long-term social isolation exacerbates the impairment of spatial working memory in APP/PS1 transgenic mice. Brain Res 1371:150–160

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Tao J, Xue X, Yang S, Han P, Lin Z, Xu W, Lin J, Peng J, Chen L (2013) Gua Lou GuiZhi decoction exerts neuroprotective effects on post-stroke spasticity via the modulation of glutamate levels and AMPA receptor expression. Int J Mol Med 31:841–848

    CAS  PubMed  Google Scholar 

  • Hubert GW, Muly EC (2014) Distribution of AMPA receptor subunit glur1 in the bed nucleus of the stria terminalis and effect of stress. Synapse 68:194–201

    Article  CAS  PubMed  Google Scholar 

  • Kang-Park MH, Wilson WA, Moore SD (2004) Differential actions of diazepam and zolpidem in basolateral and central nuclei. Neuropharmacol 46:1–9

    Article  CAS  Google Scholar 

  • Kapus GL, Gascsalui I, Vegh M, Kompagne H, Hegedus E, Leveleki C, Hársing LG, Barkóczy J, Bilkei-Gorzó A, Lévay G (2008) Antagonism of AMPA receptors produces anxiolitic-like behavior in rodents: effects of GYKKI 52466 and its novel analogues. Psychopharmacol 198:231–241

    Article  CAS  Google Scholar 

  • Kia HK, Yen G, Krebs CJ, Pfaff DW (2002) Colocalization of estrogen receptor alpha and NMDA-D mRNAs in amygdaloid and hypothalamic nuclei of the mouse brain. Mol Brain Res 104:47–54

    Article  CAS  PubMed  Google Scholar 

  • Kobylecki C, Crossman AR, Ravenscroft O (2013) Alternative splicing of AMPA receptor subunits in the 6-OHDA-lesioned rat model of Parkinson’s disease and L-DOPA-induced dyskinesia. Exp Neurol 247:476–484

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF (2002) Glutamate and GABA systems as targets for novel antidepressants and mood stabilizing treatments. Mol Psychiatry 7:71–80

    Article  Google Scholar 

  • Liang Y, Guo XL, Chen JX, Yue GX (2013) Effects of the Chinese traditional prescription xiaoyaosan decoction on chronic immobilization stress-induced changes in behavior and ultrastructure in rat hippocampus. Evid Based Complement Alternat Med 2013:984797

  • Liu SJ, Zukin RS (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci 30:126–134

    Article  CAS  PubMed  Google Scholar 

  • Lucca G, Comin CM, Valvassori SS, Pereira JG, Stertz L, Gavioli EC, Kapczinski F, Quevedo J (2008) Chronic mild stress paradigm reduces sweet food intake in rats without affecting brain derived neurotrophic factor protein levels. Curr Neurovasc Res 5:207–213

    Article  CAS  PubMed  Google Scholar 

  • Lujan R, Shigemoto R, Lopez-Bendito G (2005) Glutamate and GABA receptor signalling in the developing brain. Neurosci 130:567–580

    Article  CAS  Google Scholar 

  • Ma W, Quirion R (2014) Targeting cell surface trafficking of pain-facilitating receptors to treat chronic pain conditions. Expert Opin Ther Targets 18:459–472

    Article  PubMed  Google Scholar 

  • MacGregor DG, Avshalumov MV, Rice ME (2003) Brain edema induced by in vitro ischemia: causal factors and neuroprotection. J Neurochem 85:1402–1411

    Article  CAS  PubMed  Google Scholar 

  • Marquez C, Nandal R, Armario A (2005) Responsiveness of the hypothalamic-pituitary-adrenal axis to different novel environments is a consistent individual trait in adult male outbreed rats. Psychoendocriniol 30:179–187

    Article  CAS  Google Scholar 

  • Marquez C, Poirier GL, Cordero MI, Larsen MH, Groner A, Marquis J, Magistretti PJ, Trono D, Sandi C (2013) Periburberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increate prefrontal MAOA gene expression. Trasl Psychiatry 3:216

    Article  Google Scholar 

  • Maslova LN, Bulygina VV, Markel AL (2002) Chronic stress during prepubertal development: immediate and long-lasting effects on arterial blood pressure and anxiety-related behavior. Psychoneuroendocrinol 27:549–561

    Article  CAS  Google Scholar 

  • Matuszewich L, Karney JJ, Carter SR, Janasik SP, O’Brien JL, Friedman RD (2007) The delayed effects of chronic unpredictable stress on anxiety measures. Physiol Behav 90:674–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald HY, Wojtowicz JM (2005) Dynamics of neurogenesis in the dentate gyrus of adult rats. Neurosci Lett 385:70–75

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaption: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • Mele M, Alò R, Avolio E, Canonaco M (2014) Bcl-2/Bax expression levels tend to influence AMPAergic trafficking mechanisms during hibernation in Mesocricetus auratus. J Mol Neurosci. doi:10.1007/s12031-014-0342-3

    Google Scholar 

  • Metz GA (2007) Stress as a modulator of motor system function and pathology. Rew Neurosci 18:209–222

    Google Scholar 

  • Mineur YS, Belzung C, Crusio WE (2006) Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res 175:43–50

    Article  PubMed  Google Scholar 

  • Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci 102:9371–9376

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morin LP, Wood RI (2001) A stereotaxic atlas of the golden hamster brain. Elsevier, New York

    Google Scholar 

  • Nakache R, Lakhissi B, El Mrabet FZ, Aboubaker E, Ouichou A, Benazzouz B, Mesfioui A (2012) Synthesis and influence of two quinoxalinone derivatives on anxiety- and depressive-like responses in wistar rat. Neurosci Med 3:330–336

    Article  Google Scholar 

  • Neumann ID, Veenema AH, Beiderberck DI (2010) Aggression and anxiety: social context and neurobiological links. Front Behav Neurosci 4:12

    PubMed Central  PubMed  Google Scholar 

  • Olsen RW, Sieghart W (2009) GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacol 56:141–148

    Article  CAS  Google Scholar 

  • Ortiz J, Fitzgerald LW, Lane S, Terwilliger R, Nestler EJ (1996) Biochemical adaptations in the mesolimbic dopamine system in response to repeated stress. Neuropsychopharmacol 14:443–452

    Article  CAS  Google Scholar 

  • Pittenger C, Duman R (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacol 33:88–109

    Article  CAS  Google Scholar 

  • Radenović L, Selaković V, Kartelija G (2005) Mitochondrial superoxide production and MnSOD activity after exposure to agonist and antagonists of ionotropic glutamate receptors in hippocampus. Ann NY Acad Sci 1048:363–365

    Article  PubMed  Google Scholar 

  • Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neurosci 125:1–6

    Article  CAS  Google Scholar 

  • Regev L, Tsoory M, Gil S, Chen A (2012) Site-specific genetic manipulation of amygdala corticotrophin-releasing factor reveals its imperative role in mediating behavioral response to challenge. Biol Psychiatry 71:317–326

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro LF, Catarino T, Santos SD, Benoist M, van Leeuwen JF, Esteban JA, Carvalho AL (2014) Ghrelin triggers the synaptic incorporation of AMPA receptors in hippocampus. Proc Natl Acad Sci 111:149–158

    Article  Google Scholar 

  • Rowlett JK, Platt DM, Lelas S, Atack JR, Dawson GR (2005) Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci 102:915–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudolph U, Möhler H (2006) GABA-based therapeutic approaches GABAA receptor subtype functions. Curr Opin Pharmacol 6:18–23

    Article  CAS  PubMed  Google Scholar 

  • Schewendt M, Jezová D (2000) Gene expression of two glutamate receptor subunits in response to repeated stress exposure in rat hippocampus. Cell Mol Neurobiol 20:319–329

    Article  Google Scholar 

  • Sherin JE (2011) Post-traumatic stress disorder: the neurobiological impact of psychological trauma. Dialogues Clin Neurosci 13:263–278

    PubMed Central  PubMed  Google Scholar 

  • Takase LF, Fornal CA, Jacobs BL (2009) Effects of the hypnotic drug zolpidem on cell proliferation and survival in the dentate gyrus of young and old rats. Brain Res 1259:26–31

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Calderone A, Jover T, Grooms SY, Yokota H, Zukin RS, Bennett MVL (2002) Ischemic preconditioning acts upstream of GluR2 down-regulation to afford neuroprotection in the hippocampal CA1. PNAS 99:2362–2367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tannenbaum B, Tannenbaum GS, Sudom K, Anisman H (2002) Neurochemical and behavioral alteration solicited by a chronic intermittent stressor regimen: implications for allostatic load. Brain Res 953:82–92

    Article  CAS  PubMed  Google Scholar 

  • Taylor EW, Wang K, Nelson AR, Bredemann TM, Frases KB, Clinton SM, Puckrtt R, Marchase RB, Chatham JC, McMahon LL (2014) O-GlcNAcylation of AMPA receptor GluA2 is associated with a novel form of long-term depression at hippocampal synapses. J Neurosci 34:10–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thiagarajan TC, Lindskog M, Tsien RW (2005) Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47:725–737

    Article  CAS  PubMed  Google Scholar 

  • Ventura-Silva JM, Melo A, Ferreira AC, Carvalho MM, Campos FL, Sousa N, Pêgo JM (2013) Excitotoxic lesions in the central nucleus of the amygdala attenuate stress-induced anxiety behavior. Front Behav Neurosci 7:32

    Article  PubMed Central  PubMed  Google Scholar 

  • Verkuyl JM, Hemby SE, Joels M (2004) Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur J Neurosci 20:1665–1673

    Article  PubMed  Google Scholar 

  • Vinkers CH, Klanker M, Groenink L, Korte SM, Cook JM, Van Linn ML, Hopkins SC, Olivier B (2009) Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress. Psychopharmacol 204:299–311

    Article  CAS  Google Scholar 

  • Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2:322–328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker DL, Davis M (2002) The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav 71:379–392

    Article  CAS  PubMed  Google Scholar 

  • Weiser T (2005) AMPA receptor antagonists for the treatment of stroke. Curr Drug Targets CNS Neurol Disord 4:153–159

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Li ZD, Chen ZX, Wang XG, Shi YW, Zhao H (2014) Fear response failed to return in AAB extinction paradigm accompanied with increased NR2B and GluR1 per845 in hippocampal CA1. Neurosci 60:1–11

    Article  CAS  Google Scholar 

  • Yang JL, Sykora P, Wilson DM, Mattson MP, Bohr VA (2011) The excitatory neurotransmitter glutamate stimulates DNA repair to increase neuronal resiliency. Mech Ageing Dev 132:405–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yue GX, Wang ZF, Zhang QL (2007) Changes of central AMPA receptor subunits and related protein mRNA expression in immobilization stressed rats and effect of Xiaoyaosan on them. Zhongguo Zhong Xi Yi Jie He Za Zhi 27:1110–1115

    CAS  PubMed  Google Scholar 

  • Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z (2009) Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Neurosci 106:14075–14079

    CAS  Google Scholar 

  • Zarrindast MR, Solati J, Oryan S, Parivar K (2008) Effect of intra-amygdala injection of nicotine and GABA receptor agents on anxiety-like behavior in rats. Pharmacol 82:276–284

    Article  CAS  Google Scholar 

  • Zhang J, Abdullah JM (2013) The role of GluA1 in central nervous system disorders. Rev Neurosci 24:499–505

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhou L, Chen H, Koliatson VE (2006) An AMPA glutamatergic receptor activation-nitric oxide synthesis step signals transsynaptic apoptosis in limbic cortex. Neuropharmacol 51:67–76

    Article  CAS  Google Scholar 

  • Zhou L, Huang J, Gao J, Zhang G, Jiang J (2014) NMDA and AMPA receptors in the anterior cingulated cortex mediates visceral pain in visceral hypersensitivity rats. Cell Immunol 287:86–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Italian University Research Ministry (MIUR) and Calabria Region (POR, FSE-2007/2013) have funded this work. All authors declare that this original paper has not been published previously as well as not having any conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Alò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alò, R., Mele, M., Avolio, E. et al. Distinct Amygdalar AMPAergic/GABAergic Mechanisms Promote Anxiolitic-Like Effects in an Unpredictable Stress Model of the Hamster. J Mol Neurosci 55, 541–551 (2015). https://doi.org/10.1007/s12031-014-0386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0386-4

Keywords

Navigation