Skip to main content
Log in

Molecular Rescue of DYRK1A Overexpression in Cystathionine Beta Synthase-Deficient Mouse Brain by Enriched Environment Combined with Voluntary Exercise

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia resulting from cystathionine beta synthase (CBS) deficiency can produce cognitive dysfunction. We recently found that CBS-deficient mice exhibit increased expression of the serine/threonine kinase dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) in the brain. When dysregulated, DYRK1A contributes to the neurodegeneration, neuronal death, and loss of function observed in neurodegenerative diseases. However, brain plasticity can be improved by interventions like enriched environment combined with voluntary exercise (EE/VE). The present study sought to assess the effects of EE/VE on molecular mechanisms linked to DYRK1A overexpression in the brain of CBS-deficient mice. EE/VE was applied to 3-month-old female CBS-deficient mice for 1 month. Without intervention, CBS-deficient mice exhibited increased DYRK1A and decreased brain-derived neurotrophic factor (BDNF) levels in the cortex and hippocampus. However, EE/VE rescued these altered DYRK1A and BDNF levels in the hippocampus of CBS-deficient mice. We conclude that exercise combined with enriched environment can restore the altered molecular mechanisms in the brain of CBS-deficient mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

BDNF:

Brain-derived neurotrophic factor

CBS:

Cystathionine beta synthase

DYRK:

Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase

EE:

Enriched environment

Hcy:

Homocysteine

VE:

Voluntary exercise

References

  • Adlard PA, Perreau VM, Pop V, Cotman CW (2005) Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer's disease. J Neurosci 25:4217–4221

    Article  CAS  PubMed  Google Scholar 

  • Alonso M, Vianna MR, Depino AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F, Izquierdo I, Medina JH (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12:551–560

    Article  CAS  PubMed  Google Scholar 

  • Alonso M, Bekinschtein P, Cammarota M, Vianna MR, Izquierdo I, Medina JH (2005) Endogenous BDNF is required for long-term memory formation in the rat parietal cortex. Learn Mem 12:504–510

    Article  PubMed Central  PubMed  Google Scholar 

  • Bimonte-Nelson HA, Hunter CL, Nelson ME, Granholm AC (2003) Frontal cortex BDNF levels correlate with working memory in an animal model of Down syndrome. Behav Brain Res 139:47–57

    Article  CAS  PubMed  Google Scholar 

  • Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I, Barrachina M, Puig B, Martínez de Lagrán M, Martí E, Avila J, Dierssen M (2005) Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis 20:392–400

    Article  CAS  PubMed  Google Scholar 

  • Fukuda Y, Berry TL, Nelson M, Hunter CL, Fukuhara K, Imai H, Ito S, Granholm-Bentley AC, Kaplan AP, Mutoh T (2010) Stimulated neuronal expression of brain-derived neurotrophic factor by Neurotropin. Mol Cell Neurosci 45:226–233

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zeng XN, Guo HM, Wu XM, Chen HJ, Di RK, Wu Y (2012) Cognitive and neurochemical alterations in hyperhomocysteinemic rat. Neurol Sci 33:39–43

    Article  PubMed  Google Scholar 

  • Golabek A, Jarzabek K, Palminiello S, Walus M, Rabe A, Albertini G, Kida E (2011) Brain plasticity and environmental enrichment in Ts65Dn mice, an animal model for Down syndrome. In: Rondal JA, Perera J, Spiker D (eds) Neurocognitive rehabilitation of down syndrome. Cambridge University Press, New York, pp 17–84

    Google Scholar 

  • Guedj F, Sébrié C, Rivals I, Ledru A, Paly E, Bizot JC, Smith D, Rubin E, Gillet B, Arbones M, Delabar JM (2009) Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS One 4:e4606

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamelet J, Aït-Yahya-Graison E, Matulewicz E, Noll C, Badel-Chagnon A, Camproux AC, Demuth K, Paul JL, Delabar JM, Janel N (2007) Homocysteine threshold value based on cystathionine beta synthase and paraoxonase 1 activities in mice. Eur J Clin Invest 37:933–938

    Article  CAS  PubMed  Google Scholar 

  • Kida E, Rabe A, Walus M, Albertini G, Golabek AA (2013) Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. Exp Neurol 240:178–189

    Article  CAS  PubMed  Google Scholar 

  • Matté C, Pereira LO, Dos Santos TM, Mackedanz V, Cunha AA, Netto CA, Wyse AT (2009) Acute homocysteine administration impairs memory consolidation on inhibitory avoidance task and decreases hippocampal brain-derived neurotrophic factor immunocontent: prevention by folic acid treatment. Neuroscience 163:1039–1045

    Article  PubMed  Google Scholar 

  • Morris MS (2003) Homocysteine and Alzheimer's disease. Lancet Neurol 2:425–428

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37:1–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neuman JC, Albright KA, Schalinske KL (2013) Exercise prevents hyperhomocysteinemia in a dietary folate-restricted mouse model. Nutr Res 33:487–493

    Article  CAS  PubMed  Google Scholar 

  • Obeid R, McCaddon A, Herrmann W (2007) The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med 45:1590–1606

    CAS  PubMed  Google Scholar 

  • Pardon MC (2010) Role of neurotrophic factors in behavioral processes: implications for the treatment of psychiatric and neurodegenerative disorders. Vitam Horm 82:185–200

    Article  CAS  PubMed  Google Scholar 

  • Pham TM, Söderström S, Winblad B, Mohammed AH (1999) Effects of environmental enrichment on cognitive function and hippocampal NGF in the non-handled rats. Behav Brain Res 103:63–70

    Article  CAS  PubMed  Google Scholar 

  • Planque C, Dairou J, Noll C, Bui LC, Ripoll C, Guedj F, Delabar JM, Janel N (2013) Mice deficient in cystathionine beta synthase display increased Dyrk1A and SAHH activities in brain. J Mol Neurosci 50:1–6

    Article  CAS  PubMed  Google Scholar 

  • Pons-Espinal M, Martinez de Lagran M, Dierssen M (2013) Environmental enrichment rescues DYRK1A activity and hippocampal adult neurogenesis in TgDyrk1A. Neurobiol Dis 60:18–31

    Article  CAS  PubMed  Google Scholar 

  • Robert K, Santiard-Baron D, Chassé JF, Paly E, Aupetit J, Kamoun K et al (2004) The neuronal SAPK/JNK pathway is altered in a murine model of hyperhomocysteinemia. J Neurochem 89:33–43

    Article  CAS  PubMed  Google Scholar 

  • Robert K, Pages C, Ledru A, Delabar J, Caboche J, Janel N (2005) Regulation of extracellular signal-regulated kinase by homocysteine in hippocampus. Neuroscience 133:925–935

    Article  CAS  PubMed  Google Scholar 

  • Ronan A, Fagan K, Christie L, Conroy J, Nowak NJ, Turner G (2007) Familial 4.3 Mb duplication of 21q22 sheds new light on the Down syndrome critical region. J Med Genet 44:448–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M (2006) Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24:1850–1856

    Article  PubMed  Google Scholar 

  • Sachdev PS, Valenzuela M, Wang XL, Looi JC, Brodaty H (2002) Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology 58:1539–1541

    Article  CAS  PubMed  Google Scholar 

  • Sachdev PS. (2005) Homocysteine and brain atrophy. Prog Neuropsychopharmacol Biol Psychiatry 29:1152–1161

  • Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  • Toiber D, Azkona G, Ben-Ari S, Torán N, Soreq H, Dierssen M (2010) Engineering DYRK1A overdosage yields Down syndrome-characteristic cortical splicing aberrations. Neurobiol Dis 40:348–359

    Article  CAS  PubMed  Google Scholar 

  • Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, Hwang DY, Cho JY (2008) Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer's disease in an NSE/APPsw-transgenic model. Int J Mol Med 22:529–539

    CAS  PubMed  Google Scholar 

  • van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431

    Article  PubMed Central  PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  Google Scholar 

  • Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow MR, Maeda N (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci U S A 92:1585–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J 278:236–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young D, Lawlor PA, Leone P, Dragunow M, During MJ (1999) Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 5:448–453

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Association Gaspard Félix (L’AGAFE). We acknowledge the platform accommodation and animal testing of the animal house at the Jacques Monod Institute (University of Paris Diderot).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Janel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souchet, B., Latour, A., Gu, Y. et al. Molecular Rescue of DYRK1A Overexpression in Cystathionine Beta Synthase-Deficient Mouse Brain by Enriched Environment Combined with Voluntary Exercise. J Mol Neurosci 55, 318–323 (2015). https://doi.org/10.1007/s12031-014-0324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0324-5

Keywords

Navigation