Skip to main content

Advertisement

Log in

Expression of Immune Molecules CD25 and CXCL13 Correlated with Clinical Severity of Myasthenia Gravis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Differential expressions of immune molecules have been shown in the thymi with pathological results, including myasthenia gravis (MG). CD25 is an activation marker expressed on T cells. CXCL13 mediates the homing and motility of B cells in secondary lymphoid tissues. Herein, we investigated the expressions of CD25 and CXCL13 in the thymi of thymic hyperplasia patients with MG or with non-MG. A total of 34 thymic hyperplasia patients with MG (20 generalized MG (GMG) and 14 ocular MG (OMG) and six thymic hyperplasia patients without MG were enrolled and analyzed using immunohistochemical staining and real-time polymerase chain reaction for CD25 and CXCL13. Our study demonstrated a higher expression of both CD25 and CXCL13 in hyperplastic thymi with OMG or GMG compared to those with non-MG. According to the immunohistochemical results, we observed that CD25 expression was significantly lower in atrophic thymi and non-MG hyperplastic thymi, compared with that in infant thymi (P = 0.002 and 0.005, respectively). In contrast to CD25 expression, we did not observe differential expression of CXCL13 among three control groups. And a similar CD25 mRNA expression was found in real-time polymerase chain reaction (PCR) results. We observed that both hyperplastic thymi with OMG or GMG expressed significantly higher levels of CD25 than those with non-MG (P = 0.007 and 0.001, respectively). And an increase of CD25 expression was observed in hyperplastic thymi with GMG compared to those with OMG (P = 0.030). Similarly, CXCL13 expression was significantly higher in hyperplastic thymi with GMG or with OMG than those with non-MG (P = 0.001 and 0.050, respectively). No significant CXCL13 expression difference was found between hyperplastic thymi with GMG and those with OMG (P > 0.05). The real-time PCR results showed a similar tendency of CD25 mRNA expression among the thymi of non-MG, OMG, and GMG patients, but the difference did not reach significance (P > 0.05). An obvious increased expression of CXCL13 was found in hyperplastic thymi with GMG patients, compared to those with non-MG and OMG patients (P = 0.003 and 0.071, respectively). There was no difference found between hyperplastic thymi with non-MG and with OMG. Regression analysis showed a positive correlation between thymic CD25 level and MG symptom severity (F = 28.240; P = 0.000, r = 0.523). Similarly, a positive correlation was found between thymic CXCL13 expression and MG disease severity (F = 36.093; P = 0.000, r = 0.671). Taken together, our findings suggest CD25 and CXCL13 participate in the pathogenesis of MG and may influence the clinical symptoms of MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–314

    Article  PubMed  CAS  Google Scholar 

  • Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S (2005) Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 105:735–741

    Article  PubMed  CAS  Google Scholar 

  • Berzins SP, Uldrich AP, Sutherland JS, Gill J, Miller JF, Godfrey DI, Boyd RL (2002) Thymic regeneration: teaching an old immune system new tricks. Trends Mol Med 8:469–476

    Article  PubMed  CAS  Google Scholar 

  • Bever CJ, Aquino AV, Penn AS, Lovelace RE, Rowland LP (1983) Prognosis of ocular myasthenia. Ann Neurol 14:516–519

    Article  PubMed  Google Scholar 

  • Brenner T, Hamra-Amitay Y, Evron T, Boneva N, Seidman S, Soreq H (2003) The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis. FASEB J 17:214–222

    Article  PubMed  CAS  Google Scholar 

  • Carlsen HS, Baekkevold ES, Johansen FE, Haraldsen G, Brandtzaeg P (2002) B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut 51:364–371

    Article  PubMed  CAS  Google Scholar 

  • Correale J, Villa A (2010) Role of CD8+ CD25+ Foxp3+ regulatory T cells in multiple sclerosis. Ann Neurol 67:625–638

    PubMed  CAS  Google Scholar 

  • Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Vanini V, Romagnani P, Maggi E, Romagnani S, Annunziato F (2003) Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 102:4107–4114

    Article  PubMed  CAS  Google Scholar 

  • Dejaco C, Duftner C, Schirmer M (2006) Are regulatory T-cells linked with aging? Exp Gerontol 41:339–345

    Article  PubMed  CAS  Google Scholar 

  • Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, Evoli A (2005) Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology 116:134–141

    Article  PubMed  CAS  Google Scholar 

  • Garcia YR, Pothitakis JC, Krolick KA (2003) Myocyte production of nitric oxide in response to AChR-reactive antibodies in two inbred rat strains may influence disease outcome in experimental myasthenia gravis. Clin Immunol 106:116–126

    Article  PubMed  CAS  Google Scholar 

  • Gilboa-Geffen A, Lacoste PP, Soreq L, Cizeron-Clairac G, Le Panse R, Truffault F, Shaked I, Soreq H, Berrih-Aknin S (2007) The thymic theme of acetylcholinesterase splice variants in myasthenia gravis. Blood 109:4383–4391

    Article  PubMed  CAS  Google Scholar 

  • Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17:468–475

    Article  PubMed  CAS  Google Scholar 

  • Huang YM, Pirskanen R, Giscombe R, Link H, Lefvert AK (2004) Circulating CD4+CD25+ and CD4+CD25+ T cells in myasthenia gravis and in relation to thymectomy. Scand J Immunol 59:408–414

    Article  PubMed  Google Scholar 

  • Jaretzki AR, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB (2000) Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Ann Thorac Surg 70:327–334

    Article  PubMed  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610

    PubMed  CAS  Google Scholar 

  • Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B (1998) B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med 187:655–660

    Article  PubMed  CAS  Google Scholar 

  • Luther SA, Ansel KM, Cyster JG (2003) Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med 197:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Meraouna A, Cizeron-Clairac G, Panse RL, Bismuth J, Truffault F, Tallaksen C, Berrih-Aknin S (2006) The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 108:432–440

    Article  PubMed  CAS  Google Scholar 

  • Okumura M, Ohta M, Takeuchi Y, Shiono H, Inoue M, Fukuhara K, Kadota Y, Miyoshi S, Fujii Y, Matsuda H (2003) The immunologic role of thymectomy in the treatment of myasthenia gravis: implication of thymus-associated B-lymphocyte subset in reduction of the anti-acetylcholine receptor antibody titer. J Thorac Cardiovasc Surg 126:1922–1928

    Article  PubMed  Google Scholar 

  • Onodera H (2005) The role of the thymus in the pathogenesis of myasthenia gravis. Tohoku J Exp Med 207:87–98

    Article  PubMed  CAS  Google Scholar 

  • Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N (2002) Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol 125:185–197

    Article  PubMed  CAS  Google Scholar 

  • Shiao YM, Lee CC, Hsu YH, Huang SF, Lin CY, Li LH, Fann CS, Tsai CY, Tsai SF, Chiu HC (2010) Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia. J Neuroimmunol 221:101–106

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Qiao J, Lu CZ, Zhao CB, Zhu XM, Xiao BG (2004) Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol 112:284–289

    Article  PubMed  CAS  Google Scholar 

  • Talpur R, Jones DM, Alencar AJ, Apisarnthanarax N, Herne KL, Yang Y, Duvic M (2006) CD25 expression is correlated with histological grade and response to denileukin diftitox in cutaneous T-cell lymphoma. J Investig Dermatol 126:575–583

    Article  PubMed  CAS  Google Scholar 

  • van Roon JA, Hartgring SA, van der Wurff-Jacobs KM, Bijlsma JW, Lafeber FP (2010) Numbers of CD25+Foxp3+ T cells that lack the IL-7 receptor are increased intra-articularly and have impaired suppressive function in RA patients. Rheumatology (Oxford) 49:2084–2089

    Article  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  PubMed  CAS  Google Scholar 

  • Vincent A, Palace J, Hilton-Jones D (2001) Myasthenia gravis. Lancet 357:2122–2128

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yang M, Xu J, Zhang M, Lang B, Wang W, Vincent A (2007) Clinical and serological study of myasthenia gravis in HuBei Province, China. J Neurol Neurosurg Psychiatry 78:386–390

    Article  PubMed  Google Scholar 

  • Zhang M, Li H, Guo J, Zhou Y, Gong L, Wang X, Li Z, Zhang W (2012) Different molecular expression in thymoma with ocular or generalized myasthenia gravis. J Neurol Sci 313:27–31

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (nos. 31270952 and 31200665).

Conflicts of interest

The authors declare no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuyi Li or Wei Zhang.

Additional information

Min Zhang, Jun Guo, and Hongzeng Li equally contributed to the present paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Guo, J., Li, H. et al. Expression of Immune Molecules CD25 and CXCL13 Correlated with Clinical Severity of Myasthenia Gravis. J Mol Neurosci 50, 317–323 (2013). https://doi.org/10.1007/s12031-013-9976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9976-9

Keywords

Navigation