Skip to main content

Advertisement

Log in

Reversal of Trauma-Induced Amnesia in Mice by a Thrombin Receptor Antagonist

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Minimal traumatic brain injury (mTBI) is associated with the existence of retrograde amnesia and microscopic bleeds containing activated coagulation factors. In an mTBI model, we report that thrombin induces amnesia through its receptor protease-activated receptor 1 (PAR-1). Thrombin activity was significantly elevated (32 %, p < 0.05) 5 min following mTBI compared to controls. Amnesia was assessed by the novel object recognition test in mTBI animals and in animals injected intracerebroventricularly (ICV) with either thrombin or a PAR-1 agonist 1 h after the acquisition phase. Saline-injected controls had a preference index of over 0.3 while mTBI animals and those injected with thrombin or the PAR-1 agonist spent equal time with both objects indicating no recall of the object presented to them 24 h previously (p < 0.05). Co-injecting a PAR-1 antagonist (SCH79797) completely blocked the amnestic effects of mTBI, thrombin, and the PAR-1 agonist. Long-term potentiation, measured in hippocampal slices 24 h after mTBI, ICV thrombin or the PAR-1 agonist, was significantly impaired and this effect was completely reversed by the PAR-1 antagonist. The results support a crucial role for PAR-1 in the generation of amnesia following mTBI, revealing a novel therapeutic target for the cognitive effects of brain trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aronovich R, Gurwitz D, Kloog Y, Chapman J (2005) Antiphospholipid antibodies, thrombin and LPS activate brain endothelial cells and Ras-dependent pathways through distinct mechanisms. Immunobiology 210:781–788

    Article  PubMed  CAS  Google Scholar 

  • Beilin O, Gurwitz D, Korczyn AD, Chapman J (2001) Quantitative measurements of mouse brain thrombin-like and thrombin inhibition activities. Neuroreport 12:2347–2351

    Article  PubMed  CAS  Google Scholar 

  • Beilin O, Karussis DM, Korczyn AD, Gurwitz D, Aronovich R, Hantai D, Grigoriadis N, Mizrachi-Kol R, Chapman J (2005) Increased thrombin inhibition in experimental autoimmune encephalomyelitis. J Neurosci Res 79:351–359

    Article  PubMed  CAS  Google Scholar 

  • Beilin O, Karussis DM, Korczyn AD, Gurwitz D, Aronovich R, Mizrachi-Kol R, Chapman J (2007) Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains. Neuroreport 18:581–584

    Article  PubMed  CAS  Google Scholar 

  • Benson RR, Gattu R, Sewick B, Kou Z, Zakariah N, Cavanaugh JM, Haacke EM (2012) Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation 31:261–279

    PubMed  Google Scholar 

  • Chapman J (2006) Thrombin in inflammatory brain diseases. Autoimmun Rev 5:528–531

    Article  PubMed  CAS  Google Scholar 

  • Dix SL, Aggleton JP (1999) Extending the spontaneous preference test of recognition: evidence of object–location and object–context recognition. Behav Brain Res 99:191–200

    Article  PubMed  CAS  Google Scholar 

  • Donovan FM, Cunningham DD (1998) Signaling pathways involved in thrombin-induced cell protection. J Biol Chem 273:12746–12752

    Article  PubMed  CAS  Google Scholar 

  • Feinsod M, Langer KG (2012) The philosopher's swoon—the concussion of Michel de Montaigne: a historical vignette. World Neurosurg 78:371–374

    Article  PubMed  Google Scholar 

  • Friedmann I, Faber-Elman A, Yoles E, Schwartz M (1999) Injury-induced gelatinase and thrombin-like activities in regenerating and nonregenerating nervous systems. FASEB J 13:533–543

    PubMed  CAS  Google Scholar 

  • Friedmann I, Hauben E, Yoles E, Kardash L, Schwartz M (2001a) T cell-mediated neuroprotection involves antithrombin activity. J Neuroimmunol 121:12–21

    Article  PubMed  CAS  Google Scholar 

  • Friedmann I, Yoles E, Schwartz M (2001b) Thrombin attenuation is neuroprotective in the injured rat optic nerve. J Neurochem 76:641–649

    Article  PubMed  CAS  Google Scholar 

  • Han KS, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF (2011) Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain 4:32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A (2005) Focal cortical dysfunction and blood–brain barrier disruption in patients with Postconcussion syndrome. J Clin Neurophysiol 22:1–9

    Article  PubMed  Google Scholar 

  • Lee KR, Drury I, Vitarbo E, Hoff JT (1997) Seizures induced by intracerebral injection of thrombin: a model of intracerebral hemorrhage. J Neurosurg 87:73–78

    Article  PubMed  CAS  Google Scholar 

  • Lee CJ, Mannaioni G, Yuan H, Woo DH, Gingrich MB, Traynelis SF (2007) Astrocytic control of synaptic NMDA receptors. J Physiol 581:1057–1081

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Luo W, Wang Y, Reiser G (2007) Protease-activated receptors in the brain: receptor expression, activation, and functions in neurodegeneration and neuroprotection. Brain Res Rev 56:331–345

    Article  PubMed  CAS  Google Scholar 

  • Maggio N, Segal M (2012) Cellular basis of a rapid effect of mineralocorticosteroid receptors activation on LTP in ventral hippocampal slices. Hippocampus 22:267–275

    Article  PubMed  CAS  Google Scholar 

  • Maggio N, Shavit E, Chapman J, Segal M (2008) Thrombin induces long-term potentiation of reactivity to afferent stimulation and facilitates epileptic seizures in rat hippocampal slices: toward understanding the functional consequences of cerebrovascular insults. J Neurosci 28:732–736

    Article  PubMed  CAS  Google Scholar 

  • Maggio N, Blatt I, Vlachos A, Tanne D, Chapman J, Segal M (2013a) Treating seizures and epilepsy with anticoagulants? Front Cell Neurosci 7:19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maggio N, Cavaliere C, Papa M, Blatt I, Chapman J, Segal M (2013b) Thrombin regulation of synaptic transmission: implications for seizure onset. Neurobiol Dis 50:171–178

    Article  PubMed  CAS  Google Scholar 

  • Maggio N, Itsekson Z, Dominissini D, Blatt I, Amariglio N, Rechavi G, Tanne D, Chapman J (2013c) Thrombin regulation of synaptic plasticity: implications for physiology and pathology. Exp Neurol 247:595–604

    Article  PubMed  CAS  Google Scholar 

  • Mhatre M, Nguyen A, Kashani S, Pham T, Adesina A, Grammas P (2004) Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol Aging 25:783–793

    Article  PubMed  CAS  Google Scholar 

  • Milman A, Rosenberg A, Weizman R, Pick CG (2005) Mild traumatic brain injury induces persistent cognitive deficits and behavioral disturbances in mice. J Neurotrauma 22:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Mott TF, Mcconnon ML, Rieger BP (2012) Subacute to chronic mild traumatic brain injury. Am Fam Physician 86:1045–1051

    PubMed  Google Scholar 

  • Movsesyan VA, Yakovlev AG, Fan L, Faden AI (2001) Effect of serine protease inhibitors on posttraumatic brain injury and neuronal apoptosis. Exp Neurol 167:366–375

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Kastin AJ, Rigai T, Mclay R, Pick CG (2003) Increased hippocampal uptake of tumor necrosis factor alpha and behavioral changes in mice. Exp Brain Res 149:195–199

    PubMed  CAS  Google Scholar 

  • Povlishock JT, Christman CW (1995) The pathobiology of traumatically induced axonal injury in animals and humans: a review of current thoughts. J Neurotrauma 12:555–564

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Jenkins LW (1995) Are the pathobiological changes evoked by traumatic brain injury immediate and irreversible? Brain Pathol 5:415–426

    Article  PubMed  CAS  Google Scholar 

  • Reeves TM, Lyeth BG, Povlishock JT (1995) Long-term potentiation deficits and excitability changes following traumatic brain injury. Exp Brain Res 106:248–256

    Article  PubMed  CAS  Google Scholar 

  • Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, Hoffer BJ, Balaban CD, Schreiber S, Chiu WT, Pick CG (2011) A mouse model of blast-induced mild traumatic brain injury. Exp Neurol 232:280–289

    Article  PubMed Central  PubMed  Google Scholar 

  • Shavit E, Beilin O, Korczyn AD, Sylantiev C, Aronovich R, Drory VE, Gurwitz D, Horresh I, Bar-Shavit R, Peles E, Chapman J (2008) Thrombin receptor PAR-1 on myelin at the node of Ranvier: a new anatomy and physiology of conduction block. Brain 131:1113–1122

    Article  PubMed  Google Scholar 

  • Shavit E, Michaelson DM, Chapman J (2011) Anatomical localization of protease-activated receptor-1 and protease-mediated neuroglial crosstalk on peri-synaptic astrocytic endfeet. J Neurochem 119:460–473

    Article  PubMed  CAS  Google Scholar 

  • Shaw NA (2002) The neurophysiology of concussion. Prog Neurobiol 67:281–344

    Article  PubMed  CAS  Google Scholar 

  • Tashlykov V, Katz Y, Gazit V, Zohar O, Schreiber S, Pick CG (2007) Apoptotic changes in the cortex and hippocampus following minimal brain trauma in mice. Brain Res 1130:197–205

    Article  PubMed  CAS  Google Scholar 

  • Tashlykov V, Katz Y, Volkov A, Gazit V, Schreiber S, Zohar O, Pick CG (2009) Minimal traumatic brain injury induce apoptotic cell death in mice. J Mol Neurosci 37:16–24

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tricoci P, Huang Z, Held C, Moliterno DJ, Armstrong PW, Van De Werf F, White HD, Aylward PE, Wallentin L, Chen E, Lokhnygina Y, Pei J, Leonardi S, Rorick TL, Kilian AM, Jennings LH, Ambrosio G, Bode C, Cequier A, Cornel JH, Diaz R, Erkan A, Huber K, Hudson MP, Jiang L, Jukema JW, Lewis BS, Lincoff AM, Montalescot G, Nicolau JC, Ogawa H, Pfisterer M, Prieto JC, Ruzyllo W, Sinnaeve PR, Storey RF, Valgimigli M, Whellan DJ, Widimsky P, Strony J, Harrington RA, Mahaffey KW (2012) Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med 366:20–33

    Article  PubMed  CAS  Google Scholar 

  • Tweedie D, Milman A, Holloway HW, Li Y, Harvey BK, Shen H, Pistell PJ, Lahiri DK, Hoffer BJ, Wang Y, Pick CG, Greig NH (2007) Apoptotic and behavioral sequelae of mild brain trauma in mice. J Neurosci Res 85:805–815

    Article  PubMed  CAS  Google Scholar 

  • Ucar T, Tanriover G, Gurer I, Onal MZ, Kazan S (2006) Modified experimental mild traumatic brain injury model. J Trauma 60:558–565

    Article  PubMed  Google Scholar 

  • Xue M, Del Bigio MR (2001) Acute tissue damage after injections of thrombin and plasmin into rat striatum. Stroke 32:2164–2169

    Article  PubMed  CAS  Google Scholar 

  • Zohar O, Schreiber S, Getslev V, Schwartz JP, Mullins PG, Pick CG (2003) Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neuroscience 118:949–955

    Article  PubMed  CAS  Google Scholar 

  • Zohar O, Getslev V, Miller AL, Schreiber S, Pick CG (2006) Morphine protects for head trauma induced cognitive deficits in mice. Neurosci Lett 394:239–242

    Article  PubMed  CAS  Google Scholar 

  • Zohar O, Rubovitch V, Milman A, Schreiber S, Pick CG (2011) Behavioral consequences of minimal traumatic brain injury in mice. Acta Neurobiol Exp (Wars) 71:36–45

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Vardit Rubovitch for assistance in behavioral test design and analysis and Mrs. Ramona Aharonovitch for her excellent advice and technical guidance in biochemical assays. Dr. Nicola Maggio is a member of Talpiot Medical Leadership Program at the Sheba Medical Center. Zeev Itsekson is a Young Scientist Program for Medical Students scholar at the Sheba Medical Center.

Authorship statement

Dr. Maggio, Mr. Itsekson, and Dr. Milman made a substantial contribution to conception and design, acquisition of data, or analysis and interpretation of data presented in this manuscript. Prof. Chapman, Prof. Pick, and Dr. Shavit-Stein made a substantial contribution to a draft of this article and its critical revision. Prof. Chapman made a final approval of the version to be published.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joab Chapman.

Additional information

Zeev Itzekson and Nicola Maggio contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itzekson, Z., Maggio, N., Milman, A. et al. Reversal of Trauma-Induced Amnesia in Mice by a Thrombin Receptor Antagonist. J Mol Neurosci 53, 87–95 (2014). https://doi.org/10.1007/s12031-013-0200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0200-8

Keywords

Navigation