Skip to main content
Log in

Immunohistochemical Characteristics and Distribution of Sensory Dorsal Root Ganglia Neurons Supplying the Urinary Bladder in the Male Pig

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The study determined the distribution and immunohistochemical coding of the sensory neurons innervating the male pig urinary bladder. Retrograde tracer Fast Blue was injected bilaterally into the bladder trigone, base or dome. The presence of neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), calcitonin gene-related peptide (CGRP) and substance P (SP) were studied with immunofluorescence. Fast Blue-positive neurons were localized bilaterally in dorsal root ganglia from L1 to L6 and from S3 to S4 with specific differences regarding the injection site. The number of Fast Blue-positive neurons was higher in the right ganglia. Immunohistochemistry revealed that sensory neurons innervating the urinary bladder trigone, base and dome displayed immunoreactivities to CGRP, SP, NOS, GAL and SOM. Differences in the neuropeptide content were observed between the Fast Blue-positive neurons in lumbar and sacral ganglia. Taken together, these data indicate that the lumbar and sacral pathways probably play different roles in sensory transmission from the urinary bladder trigone, base and dome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson KE, Persson K (1995) Nitric oxide synthase and the lower urinary tract: possible implications for physiology and pathophysiology. Scand J Urol Nephrol Suppl 175:43–53

    CAS  PubMed  Google Scholar 

  • Applebaum AE, Vance WH, Coggeshall RE (1980) Segmental localization of sensory cells that innervate the bladder. J Comp Neurol 192:203–209

    Article  CAS  PubMed  Google Scholar 

  • Arms L, Vizzard MA (2011) Neuropeptides in lower urinary tract function. Handb Exp Pharmacol 395–423

  • Bennett DL, Dmietrieva N, Priestley JV, Clary D, McMahon SB (1996) trkA, CGRP and IB4 expression in retrogradely labelled cutaneous and visceral primary sensory neurones in the rat. Neurosci Lett 206:33–36

    Article  CAS  PubMed  Google Scholar 

  • Birder L, de Groat W, Mills I, Morrison J, Thor K, Drake M (2010) Neural control of the lower urinary tract: peripheral and spinal mechanisms. Neurourol Urodyn 29:128–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Birder L, Drake M, De Groat WC, Fowler C, Mayer E, Morrison J, Paton J, Griffiths D, Mills IW, Thor K (2009) Neural control. In: Abrams P, Cardozo L, Khoury S, Wein A (eds) Incotinence, 4th edn. Health Publications Ltd, Paris, pp 167–254

    Google Scholar 

  • Bossowska A, Crayton R, Radziszewski P, Kmiec Z, Majewski M (2009) Distribution and neurochemical characterization of sensory dorsal root ganglia neurons supplying porcine urinary bladder. J Physiol Pharmacol 60(Suppl 4):77–81

    PubMed  Google Scholar 

  • Callsen-Cencic P, Mense S (1997) Expression of neuropeptides and nitric oxide synthase in neurones innervating the inflamed rat urinary bladder. J Auton Nerv Syst 65:33–44

    Article  CAS  PubMed  Google Scholar 

  • Chapple CR, Milner P, Moss HE, Burnstock G (1992) Loss of sensory neuropeptides in the obstructed human bladder. Br J Urol 70:373–381

    Article  CAS  PubMed  Google Scholar 

  • Conzen MA, Sollmann H (1982) Reinnervation of the urinary bladder after microsurgical reconstruction of transsected caudal fibres. An experimental study in pigs. Urol Res 10:141–144

    Article  CAS  PubMed  Google Scholar 

  • Dalmose AL, Hvistendahl JJ, Olsen LH, Eskild-Jensen A, Djurhuus JC, Swindle MM (2000) Surgically induced urologic models in swine. J Invest Surg 13:133–145

    Article  CAS  PubMed  Google Scholar 

  • de Groat WC, Yoshimura N (2009) Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol 91–138

  • Djouhri L, Lawson SN (2004) Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev 46:131–145

    Article  PubMed  Google Scholar 

  • Downie JW, Champion JA, Nance DM (1984) A quantitative analysis of the afferent and extrinsinc efferent innervation of specyfic regions of the bladder and urethra in the cat. Brain Res Bull 12:735–740

    Article  CAS  PubMed  Google Scholar 

  • Jezernik S, Wen JG, Rijkhoff NJ, Djurhuus JC, Sinkjaer T (2000) Analysis of bladder related nerve cuff electrode recordings from preganglionic pelvic nerve and sacral roots in pigs. J Urol 163:1309–1314

    Article  CAS  PubMed  Google Scholar 

  • Kaleczyc J, Scheuermann DW, Pidsudko Z, Majewski M, Lakomy M, Timmermans JP (2002) Distribution, immunohistochemical characteristics and nerve pathways of primary sensory neurons supplying the porcine vas deferens. Cell Tissue Res 310:9–17

    Article  CAS  PubMed  Google Scholar 

  • Keast JR, Groat D (1992) Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. J Comp Neurol 319:615–623

    Article  CAS  PubMed  Google Scholar 

  • Krane RJ, Olsson CA (1973) Phenoxybenzamine in neurogenic bladder dysfunction: I. A theory of micturition. J Urol 110:650–652

    CAS  PubMed  Google Scholar 

  • Lasanen LT, Tammela TL, Liesi P, Waris T, Polak JM (1992) The effect of acute distension on vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and substance P (SP) immunoreactive nerves in the female rat urinary bladder. Urol Res 20:259–263

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Giuliani S (1991) The neurotransmitter role of calcitonin gene-related peptide in the rat and guinea-pig ureter: effect of a calcitonin gene-related peptide antagonist and species-related differences in the action of omega conotoxin on calcitonin gene-related peptide release from primary afferents. Neuroscience 43:261–268

    Article  CAS  PubMed  Google Scholar 

  • Maggi CA, Santicioli P, Patacchini R, Turini D, Barbanti G, Beneforti P, Giuliani S, Meli A (1987) Galanin: a potent modulator of excitatory neurotransmission in the human urinary bladder. Eur J Pharmacol 143:135–137

    Article  CAS  PubMed  Google Scholar 

  • Nadelhaft I, Booth AM (1984) The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: a horseradish peroxidase study. J Comp Neurol 226:238–245

    Article  CAS  PubMed  Google Scholar 

  • Nandigama R, Bonitz M, Papadakis T, Schwantes U, Bschleipfer T, Kummer W (2010) Muscarinic acetylcholine receptor subtypes expressed by mouse bladder afferent neurons. Neuroscience 168:842–850

    Article  CAS  PubMed  Google Scholar 

  • Pidsudko Z, Kaleczyc J, Majewski M, Lakomy M, Scheuermann DW, Timmermans JP (2001) Differences in the distribution and chemical coding between neurons in the inferior mesenteric ganglion supplying the colon and rectum in the pig. Cell Tissue Res 303:147–158

    Article  CAS  PubMed  Google Scholar 

  • Radziszewski P, Crayton R, Zaborski J, Czlonkowska A, Borkowski A, Bossowska A, Majewski M (2009) Multiple sclerosis produces significant changes in urinary bladder innervation which are partially reflected in the lower urinary tract functional status—sensory nerve fibers role in detrusor overactivity. Mult Scler 15:860–868

    Article  CAS  PubMed  Google Scholar 

  • Russo D, Clavenzani P, Sorteni C, Bo ML, Botti M, Gazza F, Panu R, Ragionieri L, Chiocchetti R (2013) Neurochemical features of boar lumbosacral dorsal root ganglion neurons and characterization of sensory neurons innervating the urinary bladder trigone. J Comp Neurol 521:342–366

    Article  CAS  PubMed  Google Scholar 

  • Smet PJ, Moore KH, Jonavicius J (1997) Distribution and colocalization of calcitonin gene-related peptide, tachykinins, and vasoactive intestinal peptide in normal and idiopathic unstable human urinary bladder. Lab Invest 77:37–49

    CAS  PubMed  Google Scholar 

  • Swindle MM, Moody DC, Phillips LD (1992) Swine as a models in biomedical research. Iowa State Univ Press, Ames

    Google Scholar 

  • Tsaknakis A (1971) Morphological studies of the pelvic plexus of the pig. Zentralbl Veterinarmed A 18:310–324

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (1997) Increased expression of neuronal nitric oxide synthase in bladder afferent and spinal neurons following spinal cord injury. Dev Neurosci 19:232–246

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2000) Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol 420:335–348

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2001) Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat 21:125–138

    Article  CAS  PubMed  Google Scholar 

  • Wasowicz K, Majewski M, Lakomy M (1998) Distribution of neurons innervating the uterus of the pig. J Auton Nerv Syst 74:13–22

    Article  CAS  PubMed  Google Scholar 

  • Wyndaele JJ (2010) Investigating afferent nerve activity from the lower urinary tract: highlighting some basic research techniques and clinical evaluation methods. Neurourol Urodyn 29:56–62

    Article  PubMed  Google Scholar 

  • Yau WM, Dorsett JA, Youther ML (1986) Evidence for galanin as an inhibitory neuropeptide on myenteric cholinergic neurons in the guinea-pig small intestine. Neurosci Lett 72:305–308

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura N, White G, Weight FF, De Groat WC (1996) Different types of Na+ and A-type K+ currents in dorsal root ganglion neurones innervating the rat urinary bladder. J Physiol Lond 494:1–16

    CAS  PubMed  Google Scholar 

  • Zhou Y, Ling EA (1997) Increased NADPH-diaphorase reactivity in bladder afferent pathways following urethral obstruction in guinea pigs. J Peripher Nerv Syst 2:333–342

    CAS  PubMed  Google Scholar 

  • Zvarova K, Vizzard MA (2006) Changes in galanin immunoreactivity in rat micturition reflex pathways after cyclophosphamide-induced cystitis. Cell Tissue Res 324:213–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks M. Marczak and A. Penkowski for their excellent technical assistance. This study was supported by a grant NN 308 2334 38 from the National Committee for Scientific Research Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenon Pidsudko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidsudko, Z. Immunohistochemical Characteristics and Distribution of Sensory Dorsal Root Ganglia Neurons Supplying the Urinary Bladder in the Male Pig. J Mol Neurosci 52, 71–81 (2014). https://doi.org/10.1007/s12031-013-0117-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0117-2

Keywords

Navigation