Skip to main content
Log in

Do Tardive Dyskinesia and l-Dopa Induced Dyskinesia Share Common Genetic Risk Factors? An Exploratory Study

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Tardive dyskinesia (TD) in schizophrenia patients treated with antipsychotic medications and l-dopa induced dyskinesia (LID) among Parkinson's disease (PD) affected individuals share similar clinical features. Both conditions are induced by chronic exposure to drugs that target dopaminergic receptors (antagonists in TD and agonists in LID) and cause pulsatile and nonphysiological stimulation of these receptors. We hypothesized that the two motor adverse effects partially share genetic risk factors such that certain genetic variants exert a pleiotropic effect, influencing susceptibility to TD as well as to LID. In this pilot study, we focused on 21 TD-associated SNPs, previously reported in TD genome-wide association studies or in candidate gene studies. By applying logistic regression and controlling for relevant clinical risk factors, we studied the association of the SNPs with LID vulnerability in two independent pharmacogenetic samples. We included a Jewish Israeli sample of 203 PD patients treated with l-dopa for a minimum of 3 years and evaluated the existence or absence of LID (LID+ = 128; LID− = 75). An Italian sample was composed of early LID developers (within the first 3 years of treatment, N = 187) contrasted with non-early LID developers (after 7 years or more of treatment, N = 203). None of the studied SNPs were significantly associated with LID susceptibility in the two samples. Therefore, we were unable to obtain proof of concept for our initial hypothesis of an overlapping contribution of genetic risk factors to TD and LID. Further studies in larger samples are required to reach definitive conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458

    Article  PubMed  CAS  Google Scholar 

  • Al Hadithy AF, Ivanova SA, Pechlivanoglou P et al (2009) Tardive dyskinesia and DRD3, HTR2Aand HTR2Cgene polymorphisms in Russian psychiatric inpatients from Siberia. Prog Neuropsychopharmacol Biol Psychiatry 33:475–481

    Article  PubMed  CAS  Google Scholar 

  • Al Hadithy AF, Ivanova SA, Pechlivanoglou P et al (2010) Missense polymorphisms in three oxidative-stress enzymes (GSTP1, SOD2, and GPX1) and dyskinesias in Russian psychiatric inpatients from Siberia. Hum Psychopharmacol 25:84–91

    Article  PubMed  CAS  Google Scholar 

  • Aubert I, Guigoni C, Håkansson K et al (2005) Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Ann Neurol 57:17–26

    Article  PubMed  CAS  Google Scholar 

  • Bakker PR, van Harten PN, van Os J (2006) Antipsychotic-induced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta analysis. Schizophr Res 83:185–192

    Article  PubMed  Google Scholar 

  • Bakker PR, van Harten PN, van Os J (2008) Antipsychotic-induced tardive dyskinesia and polymorphic variations in COMT, DRD2, CYP1A2 and MnSOD genes: a meta-analysis of pharmacogenetic interactions. Mol Psychiatry 13:544–556

    Article  PubMed  CAS  Google Scholar 

  • Blanchet PJ (2003) Antipsychotic drug-induced movement disorders. Can J Neurol Sci 30:S101–S107

    PubMed  Google Scholar 

  • Boke O, Gunes S, Kara N et al (2007) Association of serotonin 2A receptor and lack of association of CYP1A2 gene polymorphism with tardive dyskinesia in a Turkish population. DNA Cell Biol 26:527–531

    Google Scholar 

  • Crowley JJ, Sullivan PF, McLeod HL (2009) Pharmacogenomic genome-wide association studies: lessons learned thus far. Pharmacogenomics 10:161–163

    Article  PubMed  Google Scholar 

  • de Lau LM, Verbaan D, Marinus J, Heutink P, van Hilten JJ (2012) Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson's disease. Mov Disord 27:132–135

    Article  PubMed  Google Scholar 

  • Del Sorbo F, Albanese A (2008) Levodopa-induced dyskinesias and their management. J Neurol 255(Suppl 4):32–41

    Article  PubMed  Google Scholar 

  • Delfs JM, Ellison GD, Mercugliano M, Chesselet MF (1995) Expression of glutamic acid decarboxylase mRNA in striatum and pallidum in an animal model of tardive dyskinesia. Exp Neurol 133:175–188

    Article  PubMed  CAS  Google Scholar 

  • Egan MF, Apud J, Wyatt RJ (1997) Treatment of tardive dyskinesia. Schizophr Bull 23:583–609

    Article  PubMed  CAS  Google Scholar 

  • Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22:1379–1389

    Article  PubMed  Google Scholar 

  • Fisone G, Bezard E (2011) Molecular mechanisms of l-dopa-induced dyskinesia. Int Rev Neurobiol 98:95–122

    Article  PubMed  CAS  Google Scholar 

  • Foltynie T, Cheeran B, Williams-Gray CH et al (2009) BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson's disease. J Neurol Neurosurg Psychiatry 80:141–144

    Article  PubMed  CAS  Google Scholar 

  • Greenbaum L, Alkelai A, Rigbi A, Kohn Y, Lerer B (2010) Evidence for association of the GLI2 gene with tardive dyskinesia in patients with chronic schizophrenia. Mov Disord 25:2809–2817

    Article  PubMed  Google Scholar 

  • Greenbaum L, Alkelai A, Zozulinsky P, Kohn Y, Lerer B (2012) Support for association of HSPG2 with tardive dyskinesia in Caucasian populations. Pharmacogenomics J 12:513–20

    Google Scholar 

  • Guigoni C, Doudnikoff E, Li Q, Bloch B, Bezard E (2007) Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis 2007(26):452–463

    Article  Google Scholar 

  • Haddad PM, Dursun SM (2008) Neurological complications of psychiatric drugs: clinical features and management. Hum Psychopharmacol 23(Suppl):15–26

    Article  PubMed  Google Scholar 

  • Hassin-Baer S, Molchadski I, Cohen OS et al (2011) Gender effect on time to levodopa-induced dyskinesias. J Neurol 258:2048–2053

    Article  PubMed  CAS  Google Scholar 

  • Hely MA, Morris JG, Reid WG, Trafficante R et al (2005) Sydney Multicenter Study of Parkinson's disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord 20:190–199

    Google Scholar 

  • Jenner P (2008) Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci 9:665–677

    Article  PubMed  CAS  Google Scholar 

  • Kaiser R, Hofer A, Grapengiesser A et al (2003) l-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology 60:1750–1755

    Article  PubMed  CAS  Google Scholar 

  • Kane JM (1995) Tardive dyskinesia: epidemiological and clinical presentation. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the 4th generation of progress. Raven, New York

    Google Scholar 

  • Kang SG, Lee HJ, Choi JE, An H, Rhee M, Kim L (2009) Association study between glutathione S-transferase GST-M1, GST-T1, and GST-P1 polymorphisms and tardive dyskinesia. Hum Psychopharmacol 24:55–60

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Kang SG (2011) Genetics of tardive dyskinesia. Int Rev Neurobiol 98:231–264

    Article  PubMed  CAS  Google Scholar 

  • Lerer B, Segman RH (2006) Pharmacogenetics of antipsychotic therapy: pivotal research issues and the prospects for clinical implementation. Dialogues Clin Neurosci 8:85–94

    PubMed  Google Scholar 

  • Lerer B, Segman RH, Fangerau H et al (2002) Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 27:105–119

    Article  PubMed  CAS  Google Scholar 

  • Lerer B, Segman RH, Tan EC et al (2005) Combined analysis of 635 patients confirms an age-related association of the serotonin 2A receptor gene with tardive dyskinesia and specificity for the non-orofacial subtype. Int J Neuropsychopharmacol 8(3):411–425

    Article  PubMed  CAS  Google Scholar 

  • Lin JJ, Yueh KC, Lin SZ, Harn HJ, Liu JT (2007) Genetic polymorphism of the angiotensin converting enzyme and L-dopa-induced adverse effects in Parkinson's disease. J Neurol Sci 252:130–134

    Article  PubMed  CAS  Google Scholar 

  • Linazasoro G (2005) New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends Pharmacol Sci 26:391–397

    Article  PubMed  CAS  Google Scholar 

  • Margolese HC, Chouinard G, Kolivakis TT, Beauclair L, Miller R (2005) Tardive dyskinesia in the era of typical and atypical antipsychotics. Part 1: pathophysiology and mechanisms of induction. Can J Psychiatry 50:541–547

    PubMed  Google Scholar 

  • Mercuri NB, Bernardi G (2005) The ‘magic’ of L-dopa: why is it the gold standard Parkinson's disease therapy? Trends Pharmacol Sci 26:341–344

    Article  PubMed  CAS  Google Scholar 

  • Molchadski I, Korczyn AD, Cohen OS et al (2011) The role of apolipoprotein E polymorphisms in levodopa-induced dyskinesia. Acta Neurol Scand 123:117–121

    Article  PubMed  CAS  Google Scholar 

  • Naidu PS, Singh A, Kulkarni SK (2002) Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms. Br J Pharmacol 136:193–200

    Article  PubMed  CAS  Google Scholar 

  • Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson's disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687

    Article  PubMed  CAS  Google Scholar 

  • Oliveri RL, Annesi G, Zappia M et al (1999) Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology 53:1425–1430

    Article  PubMed  CAS  Google Scholar 

  • Paus S, Gadow F, Knapp M, Klein C, Klockgether T, Wüllner U (2009) Motor complications in patients form the German Competence Network on Parkinson's disease and the DRD3 Ser9Gly polymorphism. Mov Disord 24:1080–1084

    Article  PubMed  Google Scholar 

  • Prashanth LK, Fox S, Meissner WG (2011) l-Dopa-induced dyskinesia-clinical presentation, genetics, and treatment. Int Rev Neurobiol 98:31–54

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  • Rascol O, Brooks DJ, Korczyn AD et al (2000) A five-year study of the incidence of dyskinesia in patients with early Parkinson's disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 342:1484–1491

    Article  PubMed  CAS  Google Scholar 

  • Remington G (2007) Tardive dyskinesia: eliminated, forgotten, or overshadowed? Curr Opin Psychiatry 20:131–137

    Article  PubMed  Google Scholar 

  • Sagara Y (1998) Induction of reactive oxygen species in neurons by haloperidol. J Neurochem 71:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Sakai K, Gao XM, Hashimoto T, Tamminga CA (2001) Traditional and new antipsychotic drugs differentially alter neurotransmission markers in basal ganglia-thalamocortical neural pathways. Synapse 39:152–160

    Article  PubMed  CAS  Google Scholar 

  • Segman RH, Heresco-Levy U, Finkel B et al (2000) Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl) 152:408–413

    Article  CAS  Google Scholar 

  • Segman RH, Heresco-Levy U, Finkel B et al (2001) Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 6:225–229

    Article  PubMed  CAS  Google Scholar 

  • Sharma JC, Macnamara L, Hasoon M, Vassallo M, Ross I (2006) Cascade of levodopa dose and weight-related dyskinesia in Parkinson's disease (LD-WD-PD cascade). Parkinsonism Relat Disord 12:499–505

    Article  PubMed  Google Scholar 

  • Sharma JC, Bachmann CG, Linazasoro G (2010) Classifying risk factors for dyskinesia in Parkinson's disease. Parkinsonism Relat Disord 16:490–497

    Article  PubMed  CAS  Google Scholar 

  • Shulman JM, De Jager PL, Feany MB (2011) Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol 28:193–222

    Article  Google Scholar 

  • Strong JA, Dalvi A, Revilla FJ et al (2006) Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson's disease. Mov Disord 21:654–659

    Article  PubMed  Google Scholar 

  • Syu A, Ishiguro H, Inada T et al (2010) Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia. Neuropsychopharmacology 35:1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Syu A, Ishiguro H et al (2011) DPP6 as a candidate gene for neuroleptic-induced tardive dyskinesia. Pharmacogenomics J. doi:10.1038/tpj.2011.36

    Google Scholar 

  • Tenback DE, van Harten PN (2011) Epidemiology and risk factors for (tardive) dyskinesia. Int Rev Neurobiol 98:211–230

    Article  PubMed  CAS  Google Scholar 

  • Tenback DE, van Harten PN, van Os J (2009) Non-therapeutic risk factors for onset of tardive dyskinesia in schizophrenia: a meta-analysis. Mov Disord 24:2309–2315

    Article  PubMed  Google Scholar 

  • van Harten PN, Tenback DE (2011) Tardive dyskinesia: clinical presentation and treatment. Int Rev Neurobiol 98:187–210

    Article  PubMed  Google Scholar 

  • Watanabe M, Harada S, Nakamura T et al (2003) Association between catechol-O-methyltransferase gene polymorphisms and wearing-off and dyskinesia in Parkinson's disease. Neuropsychobiology 48:190–193

    Article  PubMed  CAS  Google Scholar 

  • Zai CC, De Luca V, Hwang RW et al (2007) Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry 12:794–795

    Article  PubMed  CAS  Google Scholar 

  • Zappia M, Annesi G, Nicoletti G et al (2005) Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol 62:601–605

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Rapid Response Innovation grant from the Michael J. Fox Foundation for Parkinson's Research. The Italian DNA samples were from the “Parkinson Biobank” of the Parkinson Institute, Istituti Clinici di Perfezionamento, Italy (www.parkinsonbiobank.com). This biobank is part of the Telethon Genetic Biobank Network (http://www.biobanknetwork.org) supported by TELETHON Italy (project no. GTB07001) and by the “Fondazione Grigioni per il Morbo di Parkinson.”

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Lerer.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenbaum, L., Goldwurm, S., Zozulinsky, P. et al. Do Tardive Dyskinesia and l-Dopa Induced Dyskinesia Share Common Genetic Risk Factors? An Exploratory Study. J Mol Neurosci 51, 380–388 (2013). https://doi.org/10.1007/s12031-013-0020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0020-x

Keywords

Navigation