Skip to main content

Advertisement

Log in

PACAP Protects Against Salsolinol-Induced Toxicity in Dopaminergic SH-SY5Y Cells: Implication for Parkinson’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino acid containing neuropeptide with various cytoprotective functions including neuroprotection. Administration of PACAP has been shown to reduce damage induced by ischemia, trauma, or exogenous toxic substances. Moreover, mice deficient in PACAP are more vulnerable to damaging insults. In this study, we sought to determine whether PACAP may also be protective against salsolinol-induced toxicity in SH-SY5Y cells and, if so, elucidate its mechanism(s) of action. Salsolinol (SALS) is an endogenous dopamine metabolite with selective toxicity to nigral dopaminergic neurons, which are directly implicated in Parkinson’s disease (PD). SH-SY5Y cells, derived from human neuroblastoma cells, express high levels of dopaminergic activity and are used extensively as a model to study these neurons. Exposure of SH-SY5Y cells to 400 μM SALS for 24 h resulted in approximately 50 % cell death that was mediated by apoptosis as determined by cell flow cytometry and increases in caspase-3 levels. Cellular toxicity was also associated with reductions in brain-derived neurotrophic factor and phosphorylated cyclic AMP response element-binding protein. Pretreatment with PACAP dose-dependently attenuated SALS-induced toxicity and the associated apoptosis and the chemical changes. PACAP receptor antagonist PACAP6-38, in turn, dose-dependently blocked the effects of PACAP. Neither PACAP nor PACAP antagonist had any effect of its own on cellular viability. These results suggest the protective effects of PACAP in a cellular model of PD. Hence, PACAP or its agonists could be of therapeutic benefit in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bitner S (2012) Cyclic AMP response element-binding protein (CREB) phosphorylation: a mechanistic marker in the development of memory enhancing Alzheimer's disease therapeutics. Biochem Pharmacol 83:705–714

    Article  Google Scholar 

  • Bollimuntha S, Ebadi M, Singh BB (2006) TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res 1099:141–149

    Article  PubMed  CAS  Google Scholar 

  • Botia B, Jolivel V, Burel D et al (2011) Neuroprotective effects of PACAP against ethanol-induced toxicity in the developing rat cerebellum. Neurotox Res 19:423–434

    Article  PubMed  CAS  Google Scholar 

  • Copeland RL, Das JR, Kanaan YM (2007) Antiapoptotic effects of nicotine in its protection against salsolinol-induced cytotoxicity. Neurotox Res 12:61–69

    Article  PubMed  CAS  Google Scholar 

  • Das JR, Tizabi Y (2009) Additive protective effects of donepezil and nicotine against salsolinol-induced cytotoxicity in SH-SY5Y cells. Neurotox Res 16:194–204

    Article  PubMed  CAS  Google Scholar 

  • Dejda A, Sokolowska P, Nowak JZ (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol Rep 57:307–320

    PubMed  CAS  Google Scholar 

  • Dogrukol-Ak D, Kumar VB, Ryerse JS, Farr SA, Verma S, Nonaka N (2009) Isolation of peptide transport system-6 from brain endothelial cells: therapeutic effects with antisense inhibition in Alzheimer and stroke models. J Cereb Blood Flow Metab 29:411–422

    Article  PubMed  CAS  Google Scholar 

  • Fernandez HH (2012) Updates in the medical management of Parkinson disease. Cleve Clin J Med 79:28–35

    Article  PubMed  Google Scholar 

  • Frechilla D, Garcia-Osta A, Palacios S, Cenarruzabebeitia E, Del Rio J (2001) BDNF mediates the neuroprotective effect of PACAP-38 on rat cortical neurons. Neuroreport 12:919–923

    Article  PubMed  CAS  Google Scholar 

  • Guillot TS, Richardson JR, Wang MZ et al (2008) PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides 42:423–434

    Article  PubMed  CAS  Google Scholar 

  • Han BH, D’Costa A, Back SA et al (2000) BDNF blocks caspase-3 activation in neonatal hypoxia–ischemia. Neurobiol Dis 7:38–53

    Article  PubMed  CAS  Google Scholar 

  • Healy DG, Abou-Sleiman PM, Wood NW (2004) PINK, PANK, or PARK? A clinicians’ guide to familial parkinsonism. Lancet Neurol 3:652–662

    Article  PubMed  CAS  Google Scholar 

  • Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  PubMed  CAS  Google Scholar 

  • Jantas D, Pytel M, Mozrzymas JW et al (2008) The attenuating effect of memantine on staurosporine-, salsolinol- and doxorubicin-induced apoptosis in human neuroblastoma SH-SY5Y cells. Eurochem Int 52:864–877

    Article  CAS  Google Scholar 

  • Kim DH, Zhao X (2005) BDNF protects neurons following injury by modulation of caspase activity. Neurocrit Care 3:71–76

    Article  PubMed  CAS  Google Scholar 

  • Lang AE (2009) When and how should treatment be started in Parkinson disease. Neurology 72:S39–S43

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici P, Cohen G, Arien-Zakay H et al (2012) Multimodal neuroprotection induced by PACAP38 in oxygen–glucose deprivation and middle cerebral artery occlusion stroke models. J Mol Neurosci 48:526–540

    Article  PubMed  CAS  Google Scholar 

  • Lewis-Tuffin LJ, Quinn PG, Chikaraishi DM (2004) Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci 25:536–547

    Article  PubMed  CAS  Google Scholar 

  • Li N, Liu GT (2010) The novel squamosamide derivative FLZ enhances BDNF/TrkB/CREB signaling and inhibits neuronal apoptosis in APP/PS1 mice. Acta Pharmacol Sin 31:265–272

    Article  PubMed  Google Scholar 

  • Maruyama W, Yi H, Takahashi T et al (2004) Neuroprotective function of R-(–)-1-(benzofuran-2-yl)-2-propylaminopentane, [R-(–)-BPAP], against apoptosis induced by N-methyl(R)salsolinol, an endogenous dopaminergic neurotoxin, in human dopaminergic neuroblastoma SH-SY5Y cells. Life Sci 75:107–117

    Article  PubMed  CAS  Google Scholar 

  • Masuo Y, Ohtaki T, Masuda Y, Tsuda M, Fujino M (1992) Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res 575:113–123

    Article  PubMed  CAS  Google Scholar 

  • Masuo Y, Suzuki N, Matsumoto H et al (1993) Regional distribution of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat central nervous system as determined by sandwich-enzyme immunoassay. Brain Res 602:657–663

    Article  Google Scholar 

  • Morris HR (2005) Genetics of Parkinson’s disease. Ann Med 37:86–96

    Article  PubMed  CAS  Google Scholar 

  • Nakamachi T, Tsuchida M, Kagami N et al (2012) IL-6 and PACAP receptor expression and localization after global brain ischemia in mice. J Mol Neurosci 48:518–525

    Article  PubMed  CAS  Google Scholar 

  • Naoi M, Maruyama W, Nagy GM (2004) Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains. Neurotoxicology 25:193–204

    Article  PubMed  CAS  Google Scholar 

  • Offen D, Sherki Y, Melamed E, Fridkin M, Brenneman DE, Gozes I (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res 854:257–262

    Article  PubMed  CAS  Google Scholar 

  • Priestley JV, Michael-Titus AT, Tetziaff W (2012) Limiting spinal cord injury by pharmacological intervention. Handb Clin Neurol 109:463–484

    Article  PubMed  Google Scholar 

  • Puerta E, Hervias I, Barros-Minones L et al (2010) Sildenafil protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF. Neurobiol Dis 38:237–245

    Article  PubMed  CAS  Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A, White LE (2008) Neuroscience, 4th edn. Sinauer Associates, Sunderland, pp 170–176

    Google Scholar 

  • Racz B, Tamas A, Kiss P et al (2006) Involvement of ERK and CREB signaling pathways in the protective effect of PACAP in monosodium glutamate-induced retinal lesion. Ann N Y Acad Sci 1070:507–511

    Article  PubMed  CAS  Google Scholar 

  • Ramlochansingh C, Taylor RE, Tizabi Y (2011) Toxic effects of low alcohol and nicotine combinations in SH-SY5Y cells are apoptotically mediated. Neurotox Res 20:263–269

    Article  PubMed  CAS  Google Scholar 

  • Rat D, Schmitt U, Tippmann F et al (2011) Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J 25:3208–3218

    Article  PubMed  CAS  Google Scholar 

  • Reglödi D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A (2000) Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31:1411–1417

    Article  PubMed  Google Scholar 

  • Reglödi D, Tamas A, Lubics A, Szalontay L, Lengvari I (2004) Morphological and functional effects of PACAP in 6-hydroxydopamine-induced lesion of the substantia nigra in rats. Regul Pept 123:85–94

    Article  PubMed  Google Scholar 

  • Reglödi D, Tamas A, Lengvari I, Toth G, Szalontay L, Lubics A (2006) Comparative study on the effects of PACAP in young, aging, and castrated males in a rat model of Parkinson’s disease. Ann NY Acad Sci 1070:518–524

    Article  PubMed  Google Scholar 

  • Reglödi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effect of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972

    Article  PubMed  Google Scholar 

  • Reglödi D, Kiss P, Szabadfi K et al (2012) PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci 48:482–492

    Article  PubMed  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Somogyvari-Vigh A, Reglödi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des 10:2861–2889

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Mamitsuka H, Ono Y (2012) Understanding the substrate specificity of conventional calpains. Biol Chem 393:853–871

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Ott S, Hwang YI et al (2002) Selective dopaminergic neurotoxicity of isoquinoline derivatives related to Parkinson’s disease: studies using heterologous expression systems of the dopamine transporter. Biochem Pharmacol 63:909–920

    Article  PubMed  CAS  Google Scholar 

  • Suk K, Park JH, Lee WH (2004) Neuropeptide PACAP inhibits hypoxic activation of brain microglia: a protective mechanism against microglial neurotoxicity in ischemia. Brain Res 1026:151–156

    Article  PubMed  CAS  Google Scholar 

  • Szabadfi K, Atlasz T, Kiss P et al (2012) Mice deficient in pituitary adenylate cyclase activating polypeptide (PACAP) are more susceptible to retinal ischemic injury in vivo. Neurotox Res 21:41–48

    Article  PubMed  CAS  Google Scholar 

  • Tamas A, Reglödi D, Farkas O et al (2012a) Effect of PACAP in central and peripheral nerve injuries. Int J Mol Sci 13:8430–8448

    Article  PubMed  CAS  Google Scholar 

  • Tamas A, Szabadfi K, Nemeth A et al (2012b) Comparative examination of inner ear in wild type and pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Neurotox Res 21:435–444

    Article  PubMed  CAS  Google Scholar 

  • Tsuchikawa D, Nakamachi T, Tsuchida M et al (2012) Neuroprotective effect of endogenous pituitary adenylate cyclase-activating polypeptide on spinal cord injury. J Mol Neurosci 48:508–517

    Article  PubMed  CAS  Google Scholar 

  • Tuncel N, Korkmaz OT, Tekin N, Sener E, Akyuz F, Inal M (2012) Antioxidant and anti-apoptotic activity of vasoactive intestinal peptide (VIP) against 6-hydroxy dopamine toxicity in the rat corpus striatum. J Mol Neurosci 46:51–57

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M et al (2000) The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells in mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci USA 97:13390–13395

    Article  PubMed  CAS  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bougault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen, Halbach O, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Article  Google Scholar 

  • Wang G, Qi C, Fan GH, Zhou HY, Chen SD (2005) PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone. FEBS Lett 579:4005–4011

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Pan J, Tan YY et al (2008) Neuroprotective effects of PACAP27 in mice model of Parkinson’s disease involved in the modulation of K (ATP) subunits and D2 receptors in the striatum. Neuropeptides 42:267–276

    Article  PubMed  CAS  Google Scholar 

  • Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-d-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem 278:9630–9963

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH/NIGMS 2 SO6 GM08016-39 (YT) and MTA Momentum Program, TAMOP (4.2.1.B-10/2/KONV-2010-002, 4.2.2.A-11/1/KONV-2012-0024), Arimura Foundation, and OTKA K104984 (AT, DR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Tizabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D., Tamas, A., Reglödi, D. et al. PACAP Protects Against Salsolinol-Induced Toxicity in Dopaminergic SH-SY5Y Cells: Implication for Parkinson’s Disease. J Mol Neurosci 50, 600–607 (2013). https://doi.org/10.1007/s12031-013-0015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0015-7

Keywords

Navigation