Skip to main content
Log in

Mitochondrial Uncoupler Carbonyl Cyanide m-Chlorophenylhydrazone Induces the Multimer Assembly and Activity of Repair Enzyme Protein l-Isoaspartyl Methyltransferase

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The protein l-isoaspartyl methyltransferase (PIMT) repairs damaged aspartyl residues in proteins. It is commonly described as a cytosolic protein highly expressed in brain tissues. Here, we report that PIMT is an active monomeric as well as a multimeric protein in mitochondria isolated from neuroblastoma cells. Upon treatments with mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), PIMT monomers level decreased by half while that of PIMT multimers was higher. Gel electrophoresis under reducing conditions of CCCP-induced PIMT multimers led to PIMT monomers accumulation, indicating that multimers resulted from disulfide-linked PIMT monomers. The antioxidant ascorbic acid significantly lowered CCCP-induced formation of PIMT multimers, suggesting that reactive oxygen species contributed to PIMT multimerization. In addition, the elevation of PIMT multimers catalytic activity upon treatments with CCCP was severely inhibited by the reducing agent dithiothreitol. This indicated that PIMT monomers have lower enzymatic activity following CCCP treatments and that activation of PIMT multimers is essentially dependent on the formation of disulfide-linked monomers of PIMT. Furthermore, the perturbation of mitochondrial function by CCCP promoted the accumulation of damaged aspartyl residues in proteins with high molecular weights. Thus, this study demonstrates the formation of active PIMT multimers associated with mitochondria that could play a key role in repairing damaged proteins accumulating during mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AdoHcy:

S-Adenosylhomocysteine

AdoMet:

S-Adenosylmethionine

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

BSO:

l-Buthionine sulfoximine

CCCP:

Carbonyl cyanide m-chlorophenylhydrazone

DCHF-DA:

2′,7′-Dichlorofluorescein diacetate

DSIPisoD:

(β-Asp5)-delta-sleep inducing peptide

DTT:

Dithiothreitol

ETC:

Electron transport chain

IEF:

Isoelectric focusing

PBS:

Phosphate-buffered saline

PIMT:

Protein l-isoaspartyl (d-aspartyl) methyltransferase

Rh123:

Rhodamine

ROS:

Reactive oxygen species

Ψ m :

Mitochondrial membrane potential

References

  • Bae N, Byeon SE, Song J et al (2011) Knock-down of protein L-isoaspartyl O-methyltransferase increases β amyloid production by decreasing ADAM10 and ADAM17 levels. Acta Pharmacol Sin 32:288–294

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Pelsman A, Wong C et al (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33:677–688

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari AA, Seol JW, Kang SJ, Park SY (2008) Mitochondrial transmembrane potential and reactive oxygen species generation regulate the enhanced effect of CCCP on TRAIL-induced SNU-638 cell apoptosis. J Vet Med Sci 70:537–542

    Article  PubMed  CAS  Google Scholar 

  • Chiappetta G, Ndiaye S, Igbaria A, Kumar C, Vinh J, Toledano MB (2010) Proteome screens for Cys residues oxidation: the redoxome. Methods Enzymol 473:199–216

    Article  PubMed  CAS  Google Scholar 

  • Clarke S (2003) Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged protein for repair. Ageing Res Rev 2:263–285

    Article  PubMed  CAS  Google Scholar 

  • Cournoyer P, Desrosiers RR (2009) Valproic acid enhances protein L-isoaspartyl methyltransferase expression by stimulating extracellular signal-regulated kinase signaling pathway. Neuropharmacology 56:839–848

    Article  PubMed  CAS  Google Scholar 

  • de Arriba SG, Krügel U, Regenthal R et al (2006) Carbonyl stress and NMDA receptor activation contribute to methylglyoxal neurotoxicity. Free Radic Biol Med 40:779–790

    Article  PubMed  Google Scholar 

  • Desrosiers RR, Fanélus I (2011) Damaged proteins bearing L-isoaspartyl residues in aging: a dynamic equilibrium between generation of isomerized forms and repair by PIMT. Curr Aging Sci 4:8–18

    PubMed  CAS  Google Scholar 

  • Fanélus I, Desrosiers RR (2008) Reactive oxygen species generated by thiol-modifying phenylarsine oxide stimulate the expression of protein L-isoaspartyl methyltransferase. Biochem Biophys Res Commun 371:203–208

    Article  PubMed  Google Scholar 

  • Gingras D, Boivin D, Beliveau R (1994) Asymmetrical distribution of L-isoaspartyl protein carboxyl methyltransferases in the plasma membranes of rat kidney cortex. Biochem J 297:145–150

    PubMed  CAS  Google Scholar 

  • Grant MM, Barber VS, Griffiths HR (2005) The presence of ascorbate induces expression of brain derived neurotrophic factor in SH-SY5Y neuroblastoma cells after peroxide insult, which is associated with increased survival. Proteomics 5:534–540

    Article  PubMed  CAS  Google Scholar 

  • Harrison FE, May JM (2009) Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 46:719–730

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Hao L, Xiong N et al (2009) Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: relevance to protein misfolding and aggregation. Brain Res 1279:1–8

    Article  PubMed  CAS  Google Scholar 

  • Huerta S, Goulet EJ, Huerta-Yepez S, Livingston EH (2007) Screening and detection of apoptosis. J Surg Res 139:143–156

    Article  PubMed  CAS  Google Scholar 

  • Kharbanda KK, Mailliard ME, Baldwin CR, Sorrell MF, Tuma DJ (2007) Accumulation of proteins bearing atypical isoaspartyl residues in livers of alcohol-fed rats is prevented by betaine administration: effects on protein-L-isoaspartyl methyltransferase activity. J Hepatol 46:1119–1125

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Lowenson JD, MacLaren DC, Clarke S, Young SG (1997) Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci USA 94:6132–61137

    Article  PubMed  CAS  Google Scholar 

  • Lanthier J, Desrosiers RR (2004) Protein L-isoaspartyl methyltransferase repairs abnormal aspartyl residues accumulated in vivo in type-I collagen and restores cell migration. Exp Cell Res 293:96–105

    Article  PubMed  CAS  Google Scholar 

  • Lanthier J, Bouthillier A, Lapointe M, Demeule M, Béliveau R, Desrosiers RR (2002) Down-regulation of protein L-isoaspartyl methyltransferase in human epileptic hippocampus contributes to generation of damaged tubulin. J Neurochem 83:581–591

    Article  PubMed  CAS  Google Scholar 

  • Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT (2010) Mitochondrial GLUT10 facilitates dehydroascorbic acid import and protects cells against oxidative stress: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet 19:3721–3733

    Article  PubMed  CAS  Google Scholar 

  • Lim ML, Minamikawa T, Nagley P (2001) The protonophore CCCP induces mitochondrial permeability transition without cytochrome c release in human osteosarcoma cells. FEBS Lett 503:69–74

    Article  PubMed  CAS  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  • May JM, Li L, Hayslett K, Qu ZC (2006) Ascorbate transport and recycling by SH-SY5Y neuroblastoma cells: response to glutamate toxicity. Neurochem Res 31:785–794

    Article  PubMed  CAS  Google Scholar 

  • McDonald T, Sheng S, Stanley B et al (2006) Expanding the subproteome of the inner mitochondria using protein separation technologies: one- and two-dimensional liquid chromatography and two-dimensional gel electrophoresis. Mol Cell Proteomics 5:2392–2411

    Article  PubMed  CAS  Google Scholar 

  • McFarland R, Taylor RW, Turnbull DM (2010) A neurological perspective on mitochondrial disease. Lancet Neurol 9:829–840

    Article  PubMed  CAS  Google Scholar 

  • Murphy AN, Fiskum G, Beal MF (1999) Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab 19:231–245

    Article  PubMed  CAS  Google Scholar 

  • Pastorino JG, Snyder JW, Hoek JB, Farber JL (1995) Ca2+ depletion prevents anoxic death of hepatocytes by inhibiting mitochondrial permeability transition. Am J Physiol 268:C676–C685

    PubMed  CAS  Google Scholar 

  • Perlman DH, Bauer SM, Ashrafian H et al (2009) Mechanistic insights into nitrite-induced cardioprotection using an integrated metabolomic/proteomic approach. Circ Res 104:796–804

    Article  PubMed  CAS  Google Scholar 

  • Purvis AR, Gross J, Dang LT et al (2007) Two Cys residues essential for von Willebrand factor multimer assembly in the Golgi. Proc Natl Acad Sci USA 104:15647–15652

    Article  PubMed  CAS  Google Scholar 

  • Radyuk SN, Michalak K, Klichko VI et al (2009) Peroxiredoxin 5 confers protection against oxidative stress and apoptosis and also promotes longevity in Drosophila. Biochem J 419:437–445

    Article  PubMed  CAS  Google Scholar 

  • Sagun KC, Cárcamo JM, Golde DW (2005) Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury. FASEB J 19:1657–1667

    Article  CAS  Google Scholar 

  • Shirasawa T, Endoh R, Zeng YX, Sakamoto K, Mori H (1995) Protein L-isoaspartyl methyltransferase: developmentally regulated gene expression and protein localization in the central nervous system of aged rat. Neurosci Lett 188:37–40

    Article  PubMed  CAS  Google Scholar 

  • Sureda FX, Escubedo E, Gabriel C, Comas J, Camarasa J, Camins A (1997) Mitochondrial membrane potential measurement in rat cerebellar neurons by flow cytometry. Cytometry 28:74–80

    Article  PubMed  CAS  Google Scholar 

  • Takeda R, Mizobuchi M, Murao K, Sato M, Takahara J (1995) Characterization of three cDNAs encoding two isozymes of an isoaspartyl protein carboxyl methyltransferase from human erythroid leukemia cells. J Biochem 117:683–685

    Article  PubMed  CAS  Google Scholar 

  • Taylor SW, Fahy E, Zhang B et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286

    Article  PubMed  CAS  Google Scholar 

  • Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88:23–45

    Article  PubMed  CAS  Google Scholar 

  • Wallace KB, Starkov AA (2000) Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 40:353–358

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Zhang J, Dong L, Li W, Jia J, An W (2010) Hepatic stimulator substance mitigates hepatic cell injury through suppression of the mitochondrial permeability transition. FEBS J 277:1297–1309

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Takagi H, Kitamura D et al (1998) Deficiency in protein L-isoaspartyl methyltransferase results in a fatal progressive epilepsy. J Neurosci 18:2063–2074

    PubMed  CAS  Google Scholar 

  • Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Sciences and Engineering Research Council of Canada to Dr. Richard R. Desrosiers (grant number 121740-06). We thank Michel Marion for his technical assistance in two-dimensional gel analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Desrosiers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanélus, I., Desrosiers, R.R. Mitochondrial Uncoupler Carbonyl Cyanide m-Chlorophenylhydrazone Induces the Multimer Assembly and Activity of Repair Enzyme Protein l-Isoaspartyl Methyltransferase. J Mol Neurosci 50, 411–423 (2013). https://doi.org/10.1007/s12031-012-9946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9946-7

Keywords

Navigation