Skip to main content
Log in

Nato3 Integrates with the Shh-Foxa2 Transcriptional Network Regulating the Differentiation of Midbrain Dopaminergic Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mesencephalic dopaminergic (mesDA) neurons originate from the floor plate of the midbrain, a transient embryonic organizing center located at the ventral-most midline. Since the loss of mesDA leads to Parkinson’s disease, the molecular mechanisms controlling the genesis and differentiation of dopaminergic progenitors are extensively studied and the identification and characterization of new genes is of interest. Here, we show that the expression of the basic helix-loop-helix transcription factor Nato3 (Ferd3l) increases in parallel to the differentiation of SN4741 dopaminergic cells in vitro. Nato3 transcription is directly regulated by the transcription factor Foxa2, a target and effector of the Sonic hedgehog (Shh) signaling cascade. Moreover, pharmacological inhibition of Shh signaling downregulated the expression of Nato3, thus defining Nato3 as a novel component of one of the major pathways controlling cell patterning and generation of mesDA. Furthermore, we show that Nato3 regulated Shh and Foxa2 through a novel feed-backward loop. Up- and downregulation of Nato3 further affected the transcription of Nurr1, implicated in the genesis of mesDA, but not of TH. Taken together, these data shed new light on the transcriptional networks controlling the generation of mesDA and may be utilized in the efforts to direct stem cells towards a dopaminergic fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeliovich A, Hammond R (2007) Midbrain dopamine neuron differentiation: factors and fates. Dev Biol 304:447–454

    Article  PubMed  CAS  Google Scholar 

  • Ang SL, Rossant J (1994) HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78:561–574

    Article  PubMed  CAS  Google Scholar 

  • Ang SL, Wierda A, Wong D, Stevens KA, Cascio S, Rossant J et al (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315

    PubMed  CAS  Google Scholar 

  • Baffi JS, Palkovits M, Castillo SO, Mezey E, Nikodem VM (1999) Differential expression of tyrosine hydroxylase in catecholaminergic neurons of neonatal wild-type and Nurr1-deficient mice. Neuroscience 93:631–642

    Article  PubMed  CAS  Google Scholar 

  • Baker H, Liu N, Chun HS, Saino S, Berlin R, Volpe B et al (2001) Phenotypic differentiation during migration of dopaminergic progenitor cells to the olfactory bulb. J Neurosci 21:8505–8513

    PubMed  CAS  Google Scholar 

  • Bayly RD, Brown CY, Agarwala S (2012) A novel role for FOXA2 and SHH in organizing midbrain signaling centers. Dev Biol 369:32–42

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shushan E, Marshak S, Shoshkes M, Cerasi E, Melloul D (2001) A pancreatic beta-cell-specific enhancer in the human PDX-1 gene is regulated by hepatocyte nuclear factor 3beta (HNF-3beta ), HNF-1alpha, and SPs transcription factors. J Biol Chem 276:17533–17540

    Article  PubMed  CAS  Google Scholar 

  • Bryja V, Cajanek L, Grahn A, Schulte G (2007a) Inhibition of endocytosis blocks Wnt signalling to beta-catenin by promoting dishevelled degradation. Acta Physiol (Oxf) 190:55–61

    Article  CAS  Google Scholar 

  • Bryja V, Schulte G, Arenas E (2007b) Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate beta-catenin. Cell Signal 19:610–616

    Article  PubMed  CAS  Google Scholar 

  • Bryja V, Schulte G, Rawal N, Grahn A, Arenas E (2007c) Wnt-5a induces dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. Journal of Cell Science 120:586–595

    Article  PubMed  CAS  Google Scholar 

  • Castillo SO, Baffi JS, Palkovits M, Goldstein DS, Kopin IJ, Witta J et al (1998) Dopamine biosynthesis is selectively abolished in substantia nigra/ventral tegmental area but not in hypothalamic neurons in mice with targeted disruption of the Nurr1 gene. Mol Cell Neurosci 11:36–46

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti SK, James JC, Mirmira RG (2002) Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J Biol Chem 277:13286–13293

    Article  PubMed  CAS  Google Scholar 

  • Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748

    Article  PubMed  CAS  Google Scholar 

  • Choi K-C, Kim S-H, Ha J-Y, Kim S-T, Son JH (2010) A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J Neurochem 112:366–376

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Leung A, Han BS, Chang MY, Moon JI, Kim CH et al (2009) Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell 5:646–658

    Article  PubMed  CAS  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA et al (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75:1417–1430

    Article  PubMed  CAS  Google Scholar 

  • Epstein DJ, Martinu L, Michaud JL, Losos KM, Fan C, Joyner AL (2000) Members of the bHLH-PAS family regulate Shh transcription in forebrain regions of the mouse CNS. Development 127:4701–4709

    PubMed  CAS  Google Scholar 

  • Ferri AL, Lin W, Mavromatakis YE, Wang JC, Sasaki H, Whitsett JA et al (2007) Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134:2761–2769

    Article  PubMed  CAS  Google Scholar 

  • Fishman-Jacob T, Youdim MBH, Mandel SA (2010) Silencing/overexpressing selected genes as a model of sporadic Parkinson’s disease. Neurodegener Dis 7:108–111

    Article  PubMed  CAS  Google Scholar 

  • Gale E, Li M (2008) Midbrain dopaminergic neuron fate specification: of mice and embryonic stem cells. Mol Brain 1:8

    Article  PubMed  Google Scholar 

  • Hemsley A, Arnheim N, Toney MD, Cortopassi G, Galas DJ (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res 17:6545–6551

    Article  PubMed  CAS  Google Scholar 

  • Hwang CK, Chun HS (2012) Isoliquiritigenin isolated from licorice Glycyrrhiza uralensis prevents 6-hydroxydopamine-induced apoptosis in dopaminergic neurons. Biosci Biotechnol Biochem 76:536–543

    Article  PubMed  CAS  Google Scholar 

  • Hynes M, Porter JA, Chiang C, Chang D, Tessier-Lavigne M, Beachy PA et al (1995a) Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron 15:35–44

    Article  PubMed  CAS  Google Scholar 

  • Hynes M, Poulsen K, Tessier-Lavigne M, Rosenthal A (1995b) Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 80:95–101

    Article  PubMed  CAS  Google Scholar 

  • Hynes M, Rosenthal A (1999) Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 9:26–36

    Article  PubMed  CAS  Google Scholar 

  • Hynes M, Stone DM, Dowd M, Pitts-Meek S, Goddard A, Gurney A et al (1997) Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 19:15–26

    Article  PubMed  CAS  Google Scholar 

  • Iwawaki T, Kohno K, Kobayashi K (2000) Identification of a potential nurr1 response element that activates the tyrosine hydroxylase gene promoter in cultured cells. Biochem Biophys Res Commun 274:590–595

    Article  PubMed  CAS  Google Scholar 

  • Joksimovic M, Anderegg A, Roy A, Campochiaro L, Yun B, Kittappa R et al (2009a) Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. Proc Natl Acad Sci U S A 106:19185–19190

    Article  PubMed  CAS  Google Scholar 

  • Joksimovic M, Yun BA, Kittappa R, Anderegg AM, Chang WW, Taketo MM et al (2009b) Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci 12:125–131

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ (2011) Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta 1812:1–11

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Sugimori M, Nakafuku M, Svendsen CN (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp Neurol 203:394–405

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Kim CH, Hwang DY, Seo H, Chung S, Hong SJ et al (2003) Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem 85:622–634

    Article  PubMed  CAS  Google Scholar 

  • Kittappa R, Chang WW, Awatramani RB, McKay RD (2007) The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. PLoS Biol 5:e325

    Article  PubMed  Google Scholar 

  • Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein: DNA associations in a chromatin environment. Methods 19:425–433

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Metzakopian E, Mavromatakis YE, Gao N, Balaskas N, Sasaki H et al (2009) Foxa1 and Foxa2 function both upstream of and cooperatively with Lmx1a and Lmx1b in a feedforward loop promoting mesodiencephalic dopaminergic neuron development. Dev Biol 333:386–396

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mandel SA, Fishman-Jacob T, Youdim MB (2012) Genetic reduction of the E3 ubiquitin ligase element, SKP1A and environmental manipulation to emulate cardinal features of Parkinson’s disease. Parkinsonism Relat Disord 18(Suppl 1):S177–S179

    Article  PubMed  Google Scholar 

  • Mansour AA, Nissim-Eliraz E, Zisman S, Golan-Lev T, Schatz O, Klar A et al (2011) Foxa2 regulates the expression of Nato3 in the floor plate by a novel evolutionarily conserved promoter. Mol Cell Neurosci 46:187–199

    Article  PubMed  CAS  Google Scholar 

  • Marti E, Takada R, Bumcrot DA, Sasaki H, McMahon AP (1995) Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121:2537–2547

    PubMed  CAS  Google Scholar 

  • Matise MP, Epstein DJ, Park HL, Platt KA, Joyner AL (1998) Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125:2759–2770

    PubMed  CAS  Google Scholar 

  • Monaghan AP, Kaestner KH, Grau E, Schutz G (1993) Postimplantation expression patterns indicate a role for the mouse forkhead/HNF-3 alpha, beta and gamma genes in determination of the definitive endoderm, chordamesoderm and neuroectoderm. Development 119:567–578

    PubMed  CAS  Google Scholar 

  • Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A 100:4245–4250

    Article  PubMed  CAS  Google Scholar 

  • Ono Y, Nakatani T, Minaki Y, Kumai M (2010) The basic helix-loop-helix transcription factor Nato3 controls neurogenic activity in mesencephalic floor plate cells. Development 137:1897–1906

    Article  PubMed  CAS  Google Scholar 

  • Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214

    Article  PubMed  CAS  Google Scholar 

  • Placzek M, Briscoe J (2005) The floor plate: multiple cells, multiple signals. Nat Rev Neurosci 6:230–240

    Article  PubMed  CAS  Google Scholar 

  • Prakash N, Wurst W (2006) Genetic networks controlling the development of midbrain dopaminergic neurons. J Physiol 575:403–410

    Article  PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A (1998) Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 125:2203–2212

    PubMed  Google Scholar 

  • Ruiz i Altaba A, Placzek M, Baldassare M, Dodd J, Jessell TM (1995) Early stages of notochord and floor plate development in the chick embryo defined by normal and induced expression of HNF-3 beta. Dev Biol 170:299–313

    Article  PubMed  Google Scholar 

  • Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126:4017–4026

    PubMed  CAS  Google Scholar 

  • Sasaki H, Hogan BL (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59

    PubMed  CAS  Google Scholar 

  • Sasaki H, Hui C, Nakafuku M, Kondoh H (1997) A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 124:1313–1322

    PubMed  CAS  Google Scholar 

  • Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F et al (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci U S A 95:4013–4018

    Article  PubMed  CAS  Google Scholar 

  • Segev E, Halachmi N, Salzberg A, Ben-Arie N (2001) Nato3 is an evolutionarily conserved bHLH transcription factor expressed in the CNS of Drosophila and mouse. Mech Dev 106:197–202

    Article  PubMed  CAS  Google Scholar 

  • She H, Yang Q, Mao Z (2012) Neurotoxin-induced selective ubiquitination and regulation of MEF2A isoform in neuronal stress response. J Neurochem 122:1203–1210

    Article  PubMed  CAS  Google Scholar 

  • Silva JP, von Meyenn F, Howell J, Thorens B, Wolfrum C, Stoffel M (2009) Regulation of adaptive behaviour during fasting by hypothalamic Foxa2. Nature 462:646–650

    Article  PubMed  CAS  Google Scholar 

  • Smidt MP, Asbreuk CH, Cox JJ, Chen H, Johnson RL, Burbach JP (2000) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 3:337–341

    Article  PubMed  CAS  Google Scholar 

  • Son JH, Chun HS, Joh TH, Cho S, Conti B, Lee JW (1999) Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J Neurosci 19:10–20

    PubMed  CAS  Google Scholar 

  • Sousa KM, Villaescusa JC, Cajanek L, Ondr JK, Castelo-Branco G, Hofstra W et al (2010) Wnt2 regulates progenitor proliferation in the developing ventral midbrain. J Biol Chem 285:7246–7253

    Article  PubMed  CAS  Google Scholar 

  • Verzi MP, Anderson JP, Dodou E, Kelly KK, Greene SB, North BJ et al (2002) N-twist, an evolutionarily conserved bHLH protein expressed in the developing CNS, functions as a transcriptional inhibitor. Dev Biol 249:174–190

    Article  PubMed  CAS  Google Scholar 

  • Wallen AA, Castro DS, Zetterstrom RH, Karlen M, Olson L, Ericson J et al (2001) Orphan nuclear receptor Nurr1 is essential for Ret expression in midbrain dopamine neurons and in the brain stem. Mol Cell Neurosci 18:649–663

    Article  CAS  Google Scholar 

  • Wang MZ, Jin P, Bumcrot DA, Marigo V, McMahon AP, Wang EA et al (1995) Induction of dopaminergic neuron phenotype in the midbrain by Sonic hedgehog protein. Nat Med 1:1184–1188

    Article  PubMed  CAS  Google Scholar 

  • Weinstein DC, Ruiz i Altaba A, Chen WS, Hoodless P, Prezioso VR, Jessell TM et al (1994) The winged-helix transcription factor HNF-3 beta is required for notochord development in the mouse embryo. Cell 78:575–588

    Article  PubMed  CAS  Google Scholar 

  • Wolfrum C, Besser D, Luca E, Stoffel M (2003) Insulin regulates the activity of forkhead transcription factor Hnf-3beta/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci U S A 100:11624–11629

    Article  PubMed  CAS  Google Scholar 

  • Yan CH, Levesque M, Claxton S, Johnson RL, Ang SL (2011) Lmx1a and lmx1b function cooperatively to regulate proliferation, specification, and differentiation of midbrain dopaminergic progenitors. J Neurosci 31:12413–12425

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Li W, She H, Dou J, Jia L, He Y et al (2012) Activation of transcription factor MEF2D by Bis(3)-cognitin protects dopaminergic neurons and ameliorates parkinsonian motor defects. J Biol Chem 287:34246–34255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by grants from the Israel Science Foundation (431/07) and the Legacy-Heritage Biomedical Program of the Israel Science Foundation (1914/08). We thank Eti Golenser and Theodora Bar-El for carefully reading and correcting the manuscript. We are grateful to Dr. Naomi Melamed-Book for expert assistance with confocal imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nissim Ben-Arie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nissim-Eliraz, E., Zisman, S., Schatz, O. et al. Nato3 Integrates with the Shh-Foxa2 Transcriptional Network Regulating the Differentiation of Midbrain Dopaminergic Neurons. J Mol Neurosci 51, 13–27 (2013). https://doi.org/10.1007/s12031-012-9939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9939-6

Keywords

Navigation