Skip to main content

Advertisement

Log in

Role of ROS/RhoA/PI3K/PKB Signaling in NS1619-Mediated Blood–Tumor Barrier Permeability Increase

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The calcium-activated potassium channel (K Ca channel) activator, NS1619, has been shown to selectively and time-dependently increase the permeability of the blood–tumor barrier (BTB) by downregulating the expression of tight junction (TJ) protein. However, the role of signaling cascades in this process has not been precisely elucidated. This study was performed to determine the role of signaling cascades involving reactive oxygen species (ROS)/RhoA/PI3K/PKB in increasing the permeability of the BTB induced by NS1619. Using an in vitro BTB model and selective inhibitors of signaling pathways, we investigated whether ROS/RhoA/PI3K/PKB pathway plays a key role in the process of the increase in BTB permeability induced by NS1619. The results revealed that the BTB permeability was increased and the expression of TJ proteins were significantly decreased by NS1619, and selective inhibitors of identified signaling pathways reversed the observed alterations. Moreover, the significant increases in ROS, RhoA activity, and PKB phosphorylation after NS1619 administration were observed, which were partly inhibited by N-2-mercaptopropionyl glycine or C3 exoenzyme or LY294002 pretreatment. The present study demonstrates that the activation of signaling cascades involving ROS/RhoA/PI3K/PKB in rat brain microvascular endothelial cells was required for the increase in BTB permeability induced by NS1619.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cooper I, Cohen-Kashi-Malina K, Teichberg VI (2011) Claudin-5 expression in in vitro models of the blood–brain barrier. Methods Mol Biol 762:347–354

    Article  PubMed  CAS  Google Scholar 

  • Drappatz J, Schiff D, Kesari S, Norden AD, Wen PY (2007) Medical management of brain tumor patients. Neurol Clin 25:1035–1071

    Article  PubMed  Google Scholar 

  • Furuse M, Sasaki H, Fujimoto K, Tsukita S (1998) A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 143:391–401

    Article  PubMed  CAS  Google Scholar 

  • Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K (2001) Molecular and cellular permeability control at the blood–brain barrier. Brain Res Rev 36:258–264

    Article  PubMed  CAS  Google Scholar 

  • Gu YT, Xue YX, Wei XY, Zhang H, Li Y (2011) Calcium-activated potassium channel activator down-regulated the expression of tight junction protein in brain tumor model in rats. Neurosci Lett 493(3):140–144

    Article  PubMed  CAS  Google Scholar 

  • Harhaj NS, Antonetti DA (2004) Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 36(7):1206–1237

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Yoshida Y, Hamada J (2006) Blood-tumor barrier in malignant brain tumor. No Shinkei Geka 34:983–999

    PubMed  CAS  Google Scholar 

  • Heinen A, Camara AK, Aldakkak M, Rhodes SS, Riess ML, Stowe DF (2007) Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential. Am J Physiol Cell Physiol 292:C148–C156

    Article  PubMed  CAS  Google Scholar 

  • Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, Bechmann I, Becher B, Luhmann HJ, Waisman A, Kuhlmann CR (2010) Cellular mechanisms of IL-17-induced blood–brain barrier disruption. FASEB J 24(4):1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Hurst RD, Fritz IB (1996) Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood–brain barrier. J Cell Physiol 167:81–88

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AI, McCall IC, Parkos CA, Nusrat A (2004) Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 15(6):2639–2651

    Article  PubMed  CAS  Google Scholar 

  • Jou TS, Schneeberger EE, Nelson WJ (1998) Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol 142:101–115

    Article  PubMed  CAS  Google Scholar 

  • Kicinska A, Szewczyk A (2004) Large-conductance potassium cation channel opener NS1619 inhibits cardiac mitochondria respiratory chain. Toxicol Mech Methods 14(1–2):59–61

    Article  PubMed  CAS  Google Scholar 

  • Komarova Y, Malik AB (2010) Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 72:463–493

    Article  PubMed  CAS  Google Scholar 

  • Massoumi R, Sjolander A (1998) The inflammatory mediator leukotriene D4 triggers a rapid reorganisation of the actin cytoskeleton in human intestinal epithelial cells. Eur J Cell Biol 76:185–191

    Article  PubMed  CAS  Google Scholar 

  • Ningaraj NS, Rao M, Hashizume K, Asotra K, Black KL (2002) Regulation of blood–brain tumor barrier permeability by calcium-activated potassium channels. J Pharmacol Exp Ther 301:838–851

    Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  CAS  Google Scholar 

  • Nusrat A, Chen JA, Foley CS, Liang TW, Tom J, Cromwell M, Quan C, Mrsny RJ (2000) The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 275:29816–29822

    Article  PubMed  CAS  Google Scholar 

  • Perriere N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycinbased purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem 93:279–289

    Article  PubMed  CAS  Google Scholar 

  • Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Shimokawa H, Kaibuchi K, Ikezu T (2006) Rho-mediated regulation of tight junctions during monocyte migration across blood–brain barrier in HIV-1 encephalitis (HIVE). Blood 107:4770–4780

    Article  PubMed  CAS  Google Scholar 

  • Prasad R, Giri S, Nath N, Singh I, Singh AK (2005) Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-kappa B pathway by lovastatin limits endothelial- monocyte cell interaction. J Neurochem 94:204–214

    Article  PubMed  CAS  Google Scholar 

  • Pun PB, Lu J, Moochhala S (2003) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348–364

    Article  Google Scholar 

  • Salama NN, Eddington ND, Fasano A (2006) Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev 58(1):15–28

    Article  PubMed  CAS  Google Scholar 

  • Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676

    Article  PubMed  CAS  Google Scholar 

  • Scott PA, Bicknell R (1993) The isolation and culture of microvascular endothelium. J Cell Sci 105(Pt 2):269–273

    PubMed  Google Scholar 

  • Shen L, Turner JR (2005) Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis. Mol Biol Cell 16:3919–3936

    Article  PubMed  CAS  Google Scholar 

  • Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87(2):243–253

    Article  PubMed  CAS  Google Scholar 

  • Vandenbroucke E, Mehta D, Minshall R, Malik AB (2008) Regulation of endothelial Junctional permeability. Ann N Y Acad Sci 1123:134–145

    Article  PubMed  CAS  Google Scholar 

  • Wojciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ (2001) Rho and Rac but not Cdc42 regulate endothelial cell permeability. J Cell Sci 114(Pt 7):1343–1355

    PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A (2002) Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul Pharmacol 38:323–337

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Xue YX, Liu LB, Liu YH, Wang P (2012) Role of RhoA/ROCK Signaling in Endothelial-Monocyte-Activating Polypeptide II Opening of the Blood-Tumor Barrier: Role of RhoA/ROCK Signaling in EMAP II Opening of the BTB. J Mol Neurosci 46:666–676

    Google Scholar 

Download references

Acknowledgments

This work was supported by Doctor-Beginning Science Foundation of Liaoning Province, no. 20101109; Specialized Research Fund for the Doctoral Program of Higher Education, no. 20102134120007; National Science Foundation for China, nos. 81100924 and 81101912; and Doctor-Beginning Science Foundation of HeBei affiliation University, no. BS09012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Ting Gu or Yi-Xue Xue.

Additional information

Y.-T. Gu and Y.-X. Xue contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, YT., Xue, YX., Wang, YF. et al. Role of ROS/RhoA/PI3K/PKB Signaling in NS1619-Mediated Blood–Tumor Barrier Permeability Increase. J Mol Neurosci 48, 302–312 (2012). https://doi.org/10.1007/s12031-012-9789-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9789-2

Keywords

Navigation