Skip to main content

Advertisement

Log in

Reversibility of Tau-Related Cognitive Defects in a Regulatable FTD Mouse Model

Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The accumulation of proteins such as Tau is a hallmark of several neurodegenerative diseases, e.g., frontotemporal dementia (FTD). So far, many mouse models of tauopathies have been generated by the use of mutated or truncated human Tau isoforms in order to enhance the amyloidogenic character of Tau and to mimic pathological processes similar to those in FTD patients. Our inducible mice express the repeat domain of human Tau (TauRD) carrying the FTDP-17 mutation ΔK280 in a “pro-aggregant” and an “anti-aggregant” version. Based on the enhanced tendency of Tau to aggregate, only the “pro-aggregant” TauRD mice develop Tau pathology (hyperphosphorylation, coassembly of human and mouse Tau, synaptic loss, and neuronal degeneration). We have now carried out behavioral and electrophysiological analyses showing that only the pro-aggregant TauRD mice have impaired learning/memory and a distinct loss of LTP. Remarkably, after suppressing the pro-aggregant human TauRD, memory and LTP recover, while neuronal loss persists. Aggregates persist as well but change their composition from mixed human/mouse to mouse Tau only. The rescue of cognition and synaptic plasticity is explained by a partial recovery of spine synapses in the hippocampus. These results indicate a tight relationship between the amyloidogenic character of Tau and brain malfunction, and suggest that the cognitive impairment is caused by toxic human TauRD species rather than by mouse Tau aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CBD:

Corticobasal degeneration

DOX:

Doxycycline

EPSP:

Excitatory postsynaptic potential

FTD:

Frontotemporal dementia

FTDP-17:

Frontotemporal dementia with Parkinsonism linked to chromosome 17

LTP:

Long-term potentiation

MARK:

Microtubule affinity regulating kinase

Mf:

mossy fiber

NFTs:

Neurofibrillary tangles

NMDAR:

NMDA receptor

PHFs:

Paired helical filaments

PiD:

Pick's disease

PSP:

Progressive supranuclear palsy

TauRD :

Repeat domain of human Tau

References

  • Adams SJ, Crook RJ, Deture M, Randle SJ, Innes AE, Yu XZ, Lin WL, Dugger BN, McBride M, Hutton M, Dickson DW, McGowan E (2009) Overexpression of wild-type murine tau results in progressive tauopathy and neurodegeneration. Am J Pathol 175(4):1598–1609

    Article  PubMed  CAS  Google Scholar 

  • Barghorn S, Zheng-Fischhöfer Q, Ackmann M, Biernat J, von Bergen M, Mandelkow EM, Mandelkow E (2000) Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry 39:11714–11721

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  PubMed  CAS  Google Scholar 

  • Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87(6):554–567

    Article  PubMed  CAS  Google Scholar 

  • Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 8(10):783–793

    Article  PubMed  CAS  Google Scholar 

  • Bulic B, Pickhardt M, Mandelkow EM, Mandelkow E (2010) Tau protein and tau aggregation inhibitors. Neuropharmacology 59(4–5):276–289

    Article  PubMed  CAS  Google Scholar 

  • Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913

    Article  PubMed  CAS  Google Scholar 

  • Denk F, Wade-Martins R (2009) Knock-out and transgenic mouse models of tauopathies. Neurobiol Aging 30:1–13

    Article  PubMed  CAS  Google Scholar 

  • Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schönig K, Bujard H, Haemisch A, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2007) The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of Alzheimer tauopathy. J Biol Chem 282:31755–31765

    Article  PubMed  CAS  Google Scholar 

  • Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, Trabucchi M (1999) Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease. Neurology 52(1):91–100

    PubMed  CAS  Google Scholar 

  • Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11(3):155–159

    PubMed  CAS  Google Scholar 

  • Gallyas F (1971) Silver staining of Alzheimer's neurofibrillary changes by means of physical development. Acta Morphol Acad Sci Hung 19(1):1–8

    PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (2002) Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 36:153–173

    Article  PubMed  CAS  Google Scholar 

  • Götz J, Ittner LM (2008) Animal models of Alzheimer's disease and frontotemporal dementia. Nat Rev Neurosci 9:532–544

    Article  PubMed  Google Scholar 

  • Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87:5827–5831

    Article  PubMed  CAS  Google Scholar 

  • Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081

    Article  PubMed  CAS  Google Scholar 

  • Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci 12(2):65–72

    Article  PubMed  CAS  Google Scholar 

  • Josephs KA (2008) Frontotemporal dementia and related disorders: deciphering the enigma. Ann Neurol 64(1):4–14

    Article  PubMed  CAS  Google Scholar 

  • Khlistunova I, Biernat J, Wang Y, Pickhardt M, von Bergen M, Gazova Z, Mandelkow E, Mandelkow EM (2006) Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 281:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Fukuda T, Sahara N, Yamashita S, Murayama M, Mizoroki T, Yoshiike Y, Lee B, Sotiropoulos I, Maeda S, Takashima A (2010) Aggregation of detergent-insoluble tau is involved in neuronal loss but not in synaptic loss. J Biol Chem 285(49):38692–38699

    Article  PubMed  CAS  Google Scholar 

  • Laakso MP, Frisoni GB, Könönen M, Mikkonen M, Beltramello A, Geroldi C, Bianchetti A, Trabucchi M, Soininen H, Aronen HJ (2000) Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer's disease: a morphometric MRI study. Biol Psychiatry 47(12):1056–1063

    Article  PubMed  CAS  Google Scholar 

  • Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405

    Article  PubMed  CAS  Google Scholar 

  • Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schönig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28:737–748

    Article  PubMed  CAS  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  PubMed  CAS  Google Scholar 

  • Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29:10741–10749

    Article  PubMed  CAS  Google Scholar 

  • Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, Guimaraes A, Yue M, Lewis J, Carlson G, Hutton M, Ashe KH (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647

    Article  PubMed  CAS  Google Scholar 

  • Rocher AB, Crimins JL, Amatrudo JM, Kinson MS, Todd-Brown MA, Lewis J, Luebke JI (2009) Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs. Exp Neurol 223(2):385–393

    Article  PubMed  Google Scholar 

  • Rosenmann H, Grigoriadis N, Eldar-Levy H, Avital A, Rozenstein L, Touloumi O, Behar L, Ben-Hur T, Avraham Y, Berry E, Segal M, Ginzburg I, Abramsky O (2008) A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Exp Neurol 212:71–84

    Article  PubMed  CAS  Google Scholar 

  • SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    Article  PubMed  CAS  Google Scholar 

  • Schindowski K, Bretteville A, Leroy K, Begard S, Brion JP, Hamdane M, Buee L (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616

    Article  PubMed  CAS  Google Scholar 

  • Spittaels K, Van den Haute C, Van Dorpe J, Bruynseels K, Vandezande K, Laenen I, Geerts H, Mercken M, Sciot R, Van Lommel A, Loos R, Van Leuven F (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165

    Article  PubMed  CAS  Google Scholar 

  • Sydow A, Mandelkow EM (2010) 'Prion-like' propagation of mouse and human tau aggregates in an inducible mouse model of tauopathy. Neurodegener Dis 7(1–3):28–31

    Article  PubMed  CAS  Google Scholar 

  • Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, Drexler D, Zhou L, Rune G, Mandelkow E, D'Hooge R, Alzheimer C, Mandelkow EM (2011) Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic tau mutant. J Neurosci 31(7):2511–2525

    Article  PubMed  CAS  Google Scholar 

  • van Swieten JC, Bronner IF, Azmani A, Severijnen LA, Kamphorst W, Ravid R, Rizzu P, Willemsen R, Heutink P (2007) The DeltaK280 mutation in MAP tau favors exon 10 skipping in vivo. J Neuropathol Exp Neurol 66:17–25

    Article  PubMed  Google Scholar 

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. A. Haemisch and his team of the animal facility at University of Hamburg Medical School for their continuous help in mouse breeding, Dr. H. Bujard and K. Schoenig (University of Heidelberg) for initial help with inducible transgenic mice, S. Hahn and A. Hofmann for excellent technical assistance, and Dr. A. Marx (Hamburg) for advice on statistics. We gratefully acknowledge reagents from Dr. E. Kandel (Columbia University, New York—CaMKIIα-tTA activator transgenic mice). This research was supported by the Max-Planck-Society, Deutsche Forschungsgemeinschaft (AL 294/9-1 to C.A.), the Bundesministerium für Bildung und Forschung/Kompetenznetz Degenerative Demenzen program (E.-M.M.), the Breuer Foundation (E.-M.M.), EU-FP7/Memosad (Grant Agreement 2006121 to E.-M.M. and R.D.), Fonds Wetenschappelijk Onderzoek (FWO)-Vlaanderen (Grant G.0327.08 to D.B. and R.D., FWOjunior scholarship to A.V.d.J.), the KUL2004 Impulse Program, Interdisciplinair Onderzoek Project 06/004, Onderzoekstoelage 06/23 (D.B.), and a K.U. Leuven fellowship (T.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva-Maria Mandelkow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sydow, A., Van der Jeugd, A., Zheng, F. et al. Reversibility of Tau-Related Cognitive Defects in a Regulatable FTD Mouse Model. J Mol Neurosci 45, 432–437 (2011). https://doi.org/10.1007/s12031-011-9604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9604-5

Keywords

Navigation