Skip to main content

Advertisement

Log in

Promoter Analysis of Mouse Scn3a Gene and Regulation of the Promoter Activity by GC Box and CpG Methylation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Voltage-gated sodium channel α-subunit type III (Nav1.3) is mainly expressed in the central nervous system and is associated with neurological disorders. The expression of mouse Scn3a product (Nav1.3) mainly occurs in embryonic and early postnatal brain but not in adult brain. Here, we report for the first time the identification and characterization of the mouse Scn3a gene promoter region and regulation of the promoter activity by GC box and CpG methylation. Luciferase assay showed that the promoter region F1.2 (nt −1,049 to +157) had significantly higher activity in PC12 cells, comparing with that in SH-SY5Y cells and HEK293 cells. A stepwise 5′ truncation of the promoter region found that the minimal functional promoter located within the region nt −168 to +157. Deletion of a GC box (nt −254 to −258) in the mouse Scn3a promoter decreased the promoter activity. CpG methylation of the F1.2 without the GC box completely repressed the promoter activity, suggesting that the GC box is a critical element in the CpG-methylated Scn3a promoter. These results suggest that the GC box and CpG methylation might play important roles in regulating mouse Scn3a gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckh S, Noda M, Lubbert H, Numa S (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8:3611–3616

    PubMed  CAS  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  PubMed  CAS  Google Scholar 

  • Blake MC, Jambou RC, Swick AG, Kahn JW, Azizkhan JC (1990) Transcriptional initiation is controlled by upstream GC-box interactions in a TATAA-less promoter. Mol Cell Biol 10:6632–6641

    PubMed  CAS  Google Scholar 

  • Brackenbury WJ, Djamgoz MB, Isom LL (2008) An emerging role for voltage-gated Na+ channels in cellular migration: regulation of central nervous system development and potentiation of invasive cancers. Neuroscientist 14:571–583

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2001) A 3D view of sodium channels. Nature 409:988–991

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Westenbroek RE, Xu X et al (2004) Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci 24:4030–4042

    Article  PubMed  CAS  Google Scholar 

  • Clark SJ, Harrison J, Molloy PL (1997) Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195:67–71

    Article  PubMed  CAS  Google Scholar 

  • Cross SH, Bird AP (1995) CpG islands and genes. Curr Opin Genet Dev 5:309–314

    Article  PubMed  CAS  Google Scholar 

  • Cummins TR, Dib-Hajj SD, Black JA, Akopian AN, Wood JN, Waxman SG (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19:RC43

    PubMed  CAS  Google Scholar 

  • Drews VL, Lieberman AP, Meisler MH (2005) Multiple transcripts of sodium channel SCN8A (Na(V)1.6) with alternative 5′- and 3′-untranslated regions and initial characterization of the SCN8A promoter. Genomics 85:245–257

    Article  PubMed  CAS  Google Scholar 

  • Elango N, Yi SV (2008) DNA methylation and structural and functional bimodality of vertebrate promoters. Mol Biol Evol 25:1602–1608

    Article  PubMed  CAS  Google Scholar 

  • Garber SS, Hoshi T, Aldrich RW (1989) Regulation of ionic currents in pheochromocytoma cells by nerve growth factor and dexamethasone. J Neurosci 9:3976–3987

    PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  PubMed  CAS  Google Scholar 

  • Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894

    Google Scholar 

  • Gunning PW, Landreth GE, Layer P, Ignatius M, Shooter EM (1981) Nerve growth factor-induced differentiation of PC12 cells: evaluation of changes in RNA and DNA metabolism. J Neurosci 1:368–379

    PubMed  CAS  Google Scholar 

  • Guo F, Yu N, Cai JQ et al (2008) Voltage-gated sodium channel Nav1.1, Nav1.3 and beta1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat. Brain Res Bull 75:179–187

    Article  PubMed  CAS  Google Scholar 

  • Harrington MA, Jones PA, Imagawa M, Karin M (1988) Cytosine methylation does not affect binding of transcription factor Sp1. Proc Natl Acad Sci USA 85:2066–2070

    Article  PubMed  CAS  Google Scholar 

  • Hata K, Sakaki Y (1997) Identification of critical CpG sites for repression of L1 transcription by DNA methylation. Gene 189:227–234

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293:1068–1070

    Article  PubMed  CAS  Google Scholar 

  • Li R, Kong Y, Ladisch S (1998) Nerve growth factor-induced neurite formation in PC12 cells is independent of endogenous cellular gangliosides. Glycobiology 8:597–603

    Article  PubMed  CAS  Google Scholar 

  • Li D, Da L, Tang H, Li T, Zhao M (2008) CpG methylation plays a vital role in determining tissue- and cell-specific expression of the human cell-death-inducing DFF45-like effector A gene through the regulation of Sp1/Sp3 binding. Nucleic Acids Res 36:330–341

    Article  PubMed  CAS  Google Scholar 

  • Long YS, Zhao QH, Su T et al (2008) Identification of the promoter region and the 5′-untranslated exons of the human voltage-gated sodium channel Na(v)1.1 gene (SCN1A) and enhancement of gene expression by the 5′-untranslated exons. J Neurosci Res 86:3375–3381

    Article  PubMed  CAS  Google Scholar 

  • Long YS, Zhao QH, Zeng T, Zeng Y, Sun WW, Liao WP (2009) Characterization of the promoter region and upstream regulation region of human and mouse SCN3A gene. Prog Biochem Biophys 36:339–345

    Article  CAS  Google Scholar 

  • MacDonald JL, Roskams AJ (2009) Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 88:170–183

    Article  PubMed  CAS  Google Scholar 

  • Martin MS, Tang B, Ta N, Escayg A (2007) Characterization of 5′ untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences. Genomics 90:225–235

    Article  PubMed  CAS  Google Scholar 

  • Nicholson E, Randall AD (2009) Na(v)1.5 sodium channels in a human microglial cell line. J Neuroimmunol 215:25–30

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Robertson KD, Hayward SD, Ling PD, Samid D, Ambinder RF (1995) Transcriptional activation of the Epstein–Barr virus latency C promoter after 5-azacytidine treatment: evidence that demethylation at a single CpG site is crucial. Mol Cell Biol 15:6150–6159

    PubMed  CAS  Google Scholar 

  • Ross S, Tienhaara A, Lee MS, Tsai LH, Gill G (2002) GC box-binding transcription factors control the neuronal specific transcription of the cyclin-dependent kinase 5 regulator p35. J Biol Chem 277:4455–4464

    Article  PubMed  CAS  Google Scholar 

  • Saleh S, Yeung SY, Prestwich S, Pucovsky V, Greenwood I (2005) Electrophysiological and molecular identification of voltage-gated sodium channels in murine vascular myocytes. J Physiol 568:155–169

    Article  PubMed  CAS  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Schade SD, Brown GB (2000) Identifying the promoter region of the human brain sodium channel subtype II gene (SCN2A). Brain Res Mol Brain Res 81:187–190

    Article  PubMed  CAS  Google Scholar 

  • Suske G (1999) The Sp-family of transcription factors. Gene 238:291–300

    Article  PubMed  CAS  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740–3745

    Article  PubMed  CAS  Google Scholar 

  • Toselli M, Tosetti P, Taglietti V (1996) Functional changes in sodium conductances in the human neuroblastoma cell line SH-SY5Y during in vitro differentiation. J Neurophysiol 76:3920–3927

    PubMed  CAS  Google Scholar 

  • Waxman SG (2001) Transcriptional channelopathies: an emerging class of disorders. Nat Rev Neurosci 2:652–659

    Article  PubMed  CAS  Google Scholar 

  • Whitaker WR, Clare JJ, Powell AJ, Chen YH, Faull RL, Emson PC (2000) Distribution of voltage-gated sodium channel alpha-subunit and beta-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol 422:123–139

    Article  PubMed  CAS  Google Scholar 

  • Whitaker WR, Faull RL, Dragunow M, Mee EW, Emson PC, Clare JJ (2001a) Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptic hippocampus. Neuroscience 106:275–285

    Article  PubMed  CAS  Google Scholar 

  • Whitaker WR, Faull RL, Waldvogel HJ, Plumpton CJ, Emson PC, Clare JJ (2001b) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 88:37–53

    Article  PubMed  CAS  Google Scholar 

  • Yu FH, Mantegazza M, Westenbroek RE et al (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9:1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Waxman SG, Hains BC (2006) Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol Pain 2:27

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank an anonymous reviewer for her/his critical and constructive comments that led to the improvement of this paper. This work was supported by The National Natural Science Foundation of China (grant nos. 31700928, 30600198, 30870876, 81000558, 81071045, 30700247, and 30900451) and The Guangzhou Scholar Project (grant nos. 10A011G and 10A012G). We are grateful to the He Shanheng Charity Foundation for contributing to the development of this institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Sheng Long.

Additional information

Guang-Fei Deng and Jia-Ming Qin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, GF., Qin, JM., Sun, XS. et al. Promoter Analysis of Mouse Scn3a Gene and Regulation of the Promoter Activity by GC Box and CpG Methylation. J Mol Neurosci 44, 115–121 (2011). https://doi.org/10.1007/s12031-011-9492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9492-8

Keywords

Navigation