Skip to main content
Log in

Aggregation of α-Synuclein in S. cerevisiae is Associated with Defects in Endosomal Trafficking and Phospholipid Biosynthesis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease is the most common neurodegenerative movement disorder. α-Synuclein is a small synaptic protein that has been linked to familial Parkinson’s disease (PD) and is also the primary component of Lewy bodies, the hallmark neuropathology found in the brain of sporadic and familial PD patients. The function of α-synuclein is currently unknown, although it has been implicated in the regulation of synaptic vesicle localization or fusion. Recently, overexpression of α-synuclein was shown to cause cytoplasmic vesicle accumulation in a yeast model of α-synuclein toxicity, but the exact role α-synuclein played in mediating this vesicle aggregation is unclear. Here, we show that α-synuclein induces aggregation of many yeast Rab GTPase proteins, that α-synuclein aggregation is enhanced in yeast mutants that produce high levels of acidic phospholipids, and that α-synuclein colocalizes with yeast membranes that are enriched for phosphatidic acid. Significantly, we demonstrate that α-synuclein expression induces vulnerability to perturbations of Ypt6 and other proteins involved in retrograde endosome–Golgi transport, linking a specific trafficking defect to α-synuclein phospholipid binding. These data suggest new pathogenic mechanisms for α-synuclein neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

LB:

Lewy body

ADH:

Alcohol dehydrogenase

ER:

Endoplasmic reticulum

References

  • Abeliovich H, Darsow T, Emr SD (1999) Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J 18:6005–6016

    Article  CAS  PubMed  Google Scholar 

  • Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JMG, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252

    Article  CAS  PubMed  Google Scholar 

  • Albert S, Gallwitz D (1999) Two new members of a family of Ypt/Rab GTPase activating proteins—promiscuity of substrate recognition. J Biol Chem 274:33186–33189

    Article  CAS  PubMed  Google Scholar 

  • Bankaitis VA, Aitken JR, Cleves AE, Dowhan W (1990) An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 347:561–562

    Article  CAS  PubMed  Google Scholar 

  • Benli M, Doring F, Robinson DG, Yang XP, Gallwitz D (1996) Two GTPase isoforms, ypt31p and ypt32p, are essential for Golgi function in yeast. EMBO J 15:6460–6475

    CAS  PubMed  Google Scholar 

  • Bowers K, Levi BP, Patel FI, Stevens TH (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294

    CAS  PubMed  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li JC, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

  • Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, Lu B, Nussbaum RL (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J Neurosci 22:8797–8807

    CAS  PubMed  Google Scholar 

  • Chandra S, Fornai F, Kwon HB, Yazdani U, Atasoy D, Liu XR, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-knockout mice for alpha- and beta-synucleins: effect on synaptic functions. Proc Natl Acad Sci USA 101:14966–14971

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) α-synuclein cooperates with CSP alpha in preventing neurodegeneration. Cell 123:383–396

    Article  CAS  PubMed  Google Scholar 

  • Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A (2004) α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    Article  CAS  PubMed  Google Scholar 

  • Cleves AE, Mcgee TP, Whitters EA, Champion KM, Aitken JR, Dowhan W, Goebl M, Bankaitis VA (1991) Mutations in the Cdp choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64:789–800

    Article  CAS  PubMed  Google Scholar 

  • Coe JGS, Lim ACB, Xu J, Hong WJ (1999) A role for Tlg1p in the transport of proteins within the Golgi apparatus of Saccharomyces cerevisiae. Mol Biol Cell 10:2407–2423

    CAS  PubMed  Google Scholar 

  • Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. Nat Med 4:1318–1320

    Article  CAS  PubMed  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu KN, Xu KX, Strathearn KE, Liu F, Cao SS, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, LaBaer J, Rochet JC, Bonini NM, Lindquist S (2006) α-synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  CAS  PubMed  Google Scholar 

  • Dalfo E, Gomez-Isla T, Rosa JL, Bodelon MN, Tejedor MC, Barrachina M, Ambrosio S, Ferrer I (2004) Abnormal α-synuclein interactions with rab proteins in α-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63:302–313

    CAS  PubMed  Google Scholar 

  • Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273:9443–9449

    Article  CAS  PubMed  Google Scholar 

  • De Antoni A, Schmitzova J, Trepte HH, Gallwitz D, Albert S (2002) Significance of GTP hydrolysis in Ypt1p-regulated endoplasmic reticulum to Golgi transport revealed by the analysis of two novel Ypt1-GAPs. J Biol Chem 277:41023–41031

    Article  PubMed  Google Scholar 

  • Duffy PE, Tennyson VM (1965) Phase and electron microscopic observations of Lewy bodies and Melanin granules in substantia Nigra and Locus Caeruleus in Parkinsons Disease. J Neuropathol Exp Neurol 24:398

    Article  Google Scholar 

  • Fang M, Kearns BG, Gedvilaite A, Kagiwada S, Kearns M, Fung MKY, Bankaitis VA (1996) Kes1p shares homology with human oxysterol binding protein and participates in a novel regulatory pathway for yeast Golgi-derived transport vesicle biogenesis. EMBO J 15:6447–6459

    CAS  PubMed  Google Scholar 

  • Forno LS, Norville RL (1976) Ultrastructure of Lewy bodies in stellate ganglion. Acta Neuropathol 34:183–197

    Article  CAS  PubMed  Google Scholar 

  • Foury F (1990) The 31-Kda polypeptide is an essential subunit of the vacuolar atpase in Saccharomyces cerevisiae. J Biol Chem 265:18554–18560

    CAS  PubMed  Google Scholar 

  • Frei SB, Rahl PB, Nussbaum M, Briggs BJ, Calero M, Janeczko S, Regan AD, Chen CZ, Barral Y, Whittaker GR, Coins RN (2006) Bioinformatic and comparative functional insights into localization of Rab proteins reveals the uncharacterized GTPases Ypt10p and Ypt11p. Mol Cell Biol 26:7299–7317

    Article  CAS  Google Scholar 

  • Galvin JE, Lee VMY, Trojanowski JQ (2001) Synucleinopathies—Clinical and pathological implications. Arch Neurol 58:186–190

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Uryu K, Trojanowski JQ, Lee VMY (1999) Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 274:7619–7622

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Jakes R, Goedert M, Duda JE, Leight S, Trojanowski JQ, Lee VMY (2000) A panel of epitope-specific antibodies detects protein domains distributed throughout human α-synuclein in Lewy bodies of Parkinson’s disease. J Neurosci Res 59:528–533

    Article  CAS  PubMed  Google Scholar 

  • Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VMY (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, TriggsRaine B, Robbins A, Graham KC, Woods RA (1997) Identification of proteins that interact with a protein of interest: applications of the yeast two-hybrid system. Mol Cell Biochem 172:67–79

    Article  CAS  PubMed  Google Scholar 

  • Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, Barlowe C, Lindquist S (2008) The Parkinson’s disease protein α-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA 105:145–150

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46K mutation in α-synuclein increases amyloid fibril formation. J Biol Chem 280:7800–7807

    Article  CAS  PubMed  Google Scholar 

  • Grote E, Vlacich G, Pypaert M, Novick PJ (2000) A snc1 endocytosis mutant: phenotypic analysis and suppression by overproduction of dihydrosphingosine phosphate lyase. Mol Biol Cell 11:4051–4065

    CAS  PubMed  Google Scholar 

  • Guo W, Roth D, Walch-Solimena C, Novick P (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Hayashida K, Oyanagi S, Mizutani Y, Yokochi M (1993) An early cytoplasmic change before Lewy body maturation—an ultrastructural-study of the Substantia-Nigra from an autopsy case of Juvenile Parkinsonism. Acta Neuropathol 85:445–448

    Article  CAS  PubMed  Google Scholar 

  • Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA (2007) Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Lipidomics and Bioactive Lipids: Mass-Spectrometry-Based Lipid Analysis, vol. 432. pp. 21-57

  • Iwai A, Masliah E, Yoshimoto M, Ge NF, Flanagan L, deSilva HAR, Kittel A, Saitoh T (1995) The precursor protein of non-a-beta component of Alzheimers-disease amyloid is a presynaptic protein of the central-nervous-system. Neuron 14:467–475

    Article  CAS  PubMed  Google Scholar 

  • Jakes R, Spillantini MG, Goedert M (1994) Identification of 2 Distinct Synucleins from Human Brain. FEBS Lett 345:27–32

    Article  CAS  PubMed  Google Scholar 

  • Jakes R, Crowther RA, Lee VMY, Trojanowski JQ, Iwatsubo T, Goedert M (1999) Epitope mapping of LB509, a monoclonal antibody directed against human α-synuclein. Neurosci Lett 269:13–16

    Article  CAS  PubMed  Google Scholar 

  • Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound α-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci USA 101:8331–8336

    Article  CAS  PubMed  Google Scholar 

  • Jensen PH, Nielsen MS, Jakes R, Dotti G, Goedert M (1998) Binding of α-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 273:26292–26294

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Laurine E, Woods W, Lee SJ (2006) A novel mechanism of interaction between α-synuclein and biological membranes. J Mol Biol 360:386–397

    Article  CAS  PubMed  Google Scholar 

  • Kloepper TH, Kienle CN, Fasshauer D (2007) An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 18:3463–3471

    Article  CAS  PubMed  Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 18:106–108

    Article  CAS  PubMed  Google Scholar 

  • Kubo S, Nemani VM, Chalkley RJ, Anthony MD, Hattori N, Mizuno Y, Edwards RH, Fortin DL (2005) A combinatorial code for the interaction of α-synuclein with membranes. J Biol Chem 280:31664–31672

    Article  CAS  PubMed  Google Scholar 

  • Kushnirov VV (2000) Rapid and reliable protein extraction from yeast. Yeast 16:857–860

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara T, Koyama A, Koyama S, Yoshina S, Ren CH, Kato T, Mitani S, Iwatsubo T (2008) A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C.elegans. Hum Mol Genet 17:2997–3009

    Article  CAS  PubMed  Google Scholar 

  • Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P, Quazi AZ, Savalle M, Nemani V, Chaudhry FA, Edwards RH, Stefanis L, Sulzer D (2006) α-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26:11915–11922

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Stirling W, Xu YQ, Xu XY, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL (2002) Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 - > Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99:8968–8973

    Article  CAS  PubMed  Google Scholar 

  • Li J, Uversky VN, Fink AL (2002) Conformational behavior of human α-synuclein is modulated by familial Parkinson’s disease point mutations A30P and A53T. Neurotoxicology 23:553–567

    Article  CAS  PubMed  Google Scholar 

  • Luo ZL, Gallwitz D (2003) Biochemical and genetic evidence for the involvement of yeast Ypt6-GTPase in protein retrieval to different Golgi compartments. J Biol Chem 278:791–799

    Article  CAS  PubMed  Google Scholar 

  • Misu K, Fujimura-Kamada K, Ueda T, Nakano A, Katoh H, Tanaka K (2003) Cdc50p, a conserved endosomal membrane protein, controls polarized growth in Saccharomyces cerevisiae. Mol Biol Cell 14:730–747

    Article  CAS  PubMed  Google Scholar 

  • Mousley CJ, Tyeryar K, Ile KE, Schaaf G, Brost RL, Boone C, Guan XL, Wenk MR, Bankaitis VA (2008) Trans-golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mol Biol Cell 19:4785–4803

    Article  CAS  PubMed  Google Scholar 

  • Munro S, Nichols BJ (1999) The GRIP domain—a novel Golgi-targeting domain found in several coiled-coil proteins. Curr Biol 9:377–380

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, los Santos P, Neiman AM (2004) Positive and negative regulation of a SNARE protein by control of intracellular localization. Mol Biol Cell 15:1802–1815

    Article  CAS  PubMed  Google Scholar 

  • Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH (2010) Increased expression of alpha-Synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65:66–79

    Article  CAS  PubMed  Google Scholar 

  • Nothwehr SF, Ha SA, Bruinsma P (2000) Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J Cell Biol 151:297–309

    Article  CAS  PubMed  Google Scholar 

  • Outeiro TF, Lindquist S (2003) Yeast cells provide insight into α-synuclein biology and pathobiology. Science 302:1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Perrin RJ, Woods WS, Clayton DF, George JM (2000) Interaction of human α-synuclein and Parkinson’s disease variants with phospholipids—Structural analysis using site-directed mutagenesis. J Biol Chem 275:34393–34398

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, DiIorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    Article  CAS  PubMed  Google Scholar 

  • Protopopov V, Govindan B, Novick P, Gerst JE (1993) Homologs of the synaptobrevin Vamp family of synaptic vesicle proteins function on the late secretory pathway in Saccharomyces cerevisiae. Cell 74:855–861

    Article  CAS  PubMed  Google Scholar 

  • Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of α-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90:4692–4700

    Article  CAS  PubMed  Google Scholar 

  • Salama SR, Cleves AE, Malehorn DE, Whitters EA, Bankaitis VA (1990) Cloning and characterization of Kluyveromyces-Lactis Sec14, A gene whose product stimulates Golgi secretory function in Saccharomyces cerevisiae. J Bacteriol 172:4510–4521

    CAS  PubMed  Google Scholar 

  • Schimmoller F, Riezman H (1993) Involvement of Ypt7P, a small Gtpase, in traffic from late endosome to the vacuole in yeast. J Cell Sci 106:823–830

    PubMed  Google Scholar 

  • Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S (2010) A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J Neurosci 30:8083–8095

    Article  CAS  PubMed  Google Scholar 

  • Segrest JP, Jones MK, Deloof H, Brouillette CG, Venkatachalapathi YV, Anantharamaiah GM (1992) The Amphipathic helix in the exchangeable apolipoproteins—a review of secondary structure and function. J Lipid Res 33:141–166

    CAS  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BNG, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Singerkruger B, Stenmark H, Dusterhoft A, Philippsen P, Yoo JS, Gallwitz D, Zerial M (1994) Role of 3 Rab5-Like Gtpases, Ypt51P, Ypt52P, and Ypt53P, in the endocytic and vacuolar protein sorting pathways of yeast. J Cell Biol 125:283–298

    Article  CAS  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) α-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  CAS  PubMed  Google Scholar 

  • Siniossoglou S, Pelham HRB (2001) An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J 20:5991–5998

    Article  CAS  PubMed  Google Scholar 

  • Siniossoglou S, Pelham HRB (2002) Vps51p links the VFT complex to the SNARE Tlg1p. J Biol Chem 277:48318–48324

    Article  CAS  PubMed  Google Scholar 

  • Siniossoglou S, Peak-Chew SY, Pelham HRB (2000) Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p. EMBO J 19:4885–4894

    Article  CAS  PubMed  Google Scholar 

  • Soldati T, Riederer MA, Pfeffer SR (1993) Rab Gdi—a solubilizing and recycling factor for Rab9-protein. Mol Biol Cell 4:425–434

    CAS  PubMed  Google Scholar 

  • Soper JH, Roy S, Stieber A, Lee E, Wilson RB, Trojanowski JQ, Burd CG, Lee VMY (2008) α-synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. Mol Biol Cell 19:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  PubMed  Google Scholar 

  • Stockl M, Fischer P, Wanker E, Herrmann A (2008) alpha-Synuclein selectively binds to anionic phospholipids embedded in liquid-disordered domains. J Mol Biol 375:1394–1404

    Article  PubMed  Google Scholar 

  • Strom M, Vollmer P, Tan TJ, Gallwitz D (1993) A Yeast Gtpase-activating protein that interacts specifically with a member of the Ypt/Rab family. Nature 361:736–739

    Article  CAS  PubMed  Google Scholar 

  • Thayanidhi N, Helm JR, Nycz DC, Bentley M, Liang Y, Hay JC (2010) {alpha}-Synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in Mammalian cells by antagonizing ER/Golgi SNAREs. Mol Biol Cell 21:1850–1863

    Article  CAS  PubMed  Google Scholar 

  • Tong AHY, Lesage G, Bader GD, Ding HM, Xu H, Xin XF, Young J, Berriz GF, Brost RL, Chang M, Chen YQ, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke LZ, Krogan N, Li ZJ, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu HW, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M, Gallwitz D (1996) Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p. J Cell Sci 109:2471–2481

    CAS  PubMed  Google Scholar 

  • Volles MJ, Lansbury PT (2007) Relationships between the sequence of α-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol 366:1510–1522

    Article  CAS  PubMed  Google Scholar 

  • Vollmer P, Will E, Scheglmann D, Strom M, Gallwitz D (1999) Primary structure and biochemical characterization of yeast GTPase-activating proteins with substrate preference for the transport GTPase Ypt7p. Eur J Biochem 260:284–290

    Article  CAS  PubMed  Google Scholar 

  • Watanabe I, Vachal E, Tomita T (1977) Dense core vesicles around Lewy body in incidental Parkinsons-disease—electron-microscopic study. Acta Neuropathol 39:173–175

    Article  CAS  PubMed  Google Scholar 

  • Wichmann H, Hengst L, Gallwitz D (1992) Endocytosis in yeast—evidence for the involvement of a small Gtp-binding protein (Ypt7P). Cell 71:1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Wiederkehr A, Avaro S, Prescianotto-Baschong C, Haguenauer-Tsapis R, Riezman H (2000) The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. J Cell Biol 149:397–410

    Article  CAS  PubMed  Google Scholar 

  • Willingham S, Outeiro TF, Devit MJ, Lindquist SL, Muchowski PJ (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science 302:1769–1772

    Article  CAS  PubMed  Google Scholar 

  • Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL (1999) α-synuclein fibrillogenesis is nucleation-dependent—Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 274:19509–19512

    Article  CAS  PubMed  Google Scholar 

  • Xie ZG, Fang M, Rivas MP, Faulkner AJ, Sternweis PC, Engebrecht J, Bankaitis VA (1998) Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc Natl Acad Sci USA 95:12346–12351

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kao SY, Lee FJS, Song WH, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606

    Article  CAS  PubMed  Google Scholar 

  • Yavich L, Tanila H, Vepsalainen S, Jakala P (2004) Role of α-synuclein in presynaptic dopamine recruitment. J Neurosci 24:11165–11170

    Article  CAS  PubMed  Google Scholar 

  • Zabrocki P, Bastiaens I, Delay C, Bammens T, Ghillebert R, Pellens K, De Virgilio C, Van Leuven F, Winderickx J (2008) Phosphorylation, lipid raft interaction and traffic of [alpha]-synuclein in a yeast model for Parkinson. Biochim Biophys Acta 1783(10):1767–1780

    Article  CAS  PubMed  Google Scholar 

  • Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Tortosa EG, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA (2005) Navigating the chaperone network: an integrative map of physical, genetic, and chemical-genetic interactions mediated by the yeast Hsp90 chaperone system. FEBS J 272:349

    Google Scholar 

  • Zinser E, Daum G (1995) Isolation and biochemical-characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11:493–536

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (1-P50-NS053488-01A2) and the Picower Foundation. V.M.-Y.L. is the John H. Ware III professor in Alzheimer’s disease research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Soper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOC 171 kb)

Figure S2

(DOC 93 kb)

Figure S3

(DOC 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soper, J.H., Kehm, V., Burd, C.G. et al. Aggregation of α-Synuclein in S. cerevisiae is Associated with Defects in Endosomal Trafficking and Phospholipid Biosynthesis. J Mol Neurosci 43, 391–405 (2011). https://doi.org/10.1007/s12031-010-9455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9455-5

Keywords

Navigation