Skip to main content
Log in

Differential Sensitivity of A2A and Especially D2 Receptor Trafficking to Cocaine Compared with Lipid Rafts in Cotransfected CHO Cell Lines. Novel Actions of Cocaine Independent of the DA Transporter

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The effects of low and high concentrations of cocaine have been studied in vitro on the trafficking of plasma membrane A2A and D2 immunoreactivities in previously characterized A2A-D2 CHO cell lines. Receptor double immunofluorescence staining was performed with D2 and A2A antibodies, planar lipid rafts immunolabeling with biotinylated cholera toxin subunit B and membrane invaginations with an anti-caveolin-1 antibody. A computer-assisted image analysis demonstrated a substantial and highly significant rise of membrane-associated D2 immunoreactivity (IR) after 8 h of exposure to a low concentration of cocaine (150 nM). At this low concentration of cocaine, there was also an increase of membrane associated A2A immunoreactivity but smaller and less significant. However, this increase became considerably larger and highly significant at 150 µM at which concentration the rise of D2 immunoreactivity had begun to disappear. It may be suggested that an allosteric action of cocaine at 150 nM on the D2 receptors may primarily increase the insertion of D2 monomers, homomers and also of a subpopulation of A2A-D2 heteromers from the cytoplasm into the plasma membrane due to the conformational change induced by cocaine in the D2 receptor. The planar lipid rafts and the caveolae are only affected by the higher concentrations of cocaine. It is proposed that changes in D2 and A2A-D2 trafficking induced by allosteric actions of cocaine at D2 receptors may contribute to the alterations of D2 signaling found in cocaine abusers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S et al (2005a) New methods to evaluate colocalization of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. J Histochem Cytochem 53(8):941–953. doi:10.1369/jhc.4A6355.2005

    Article  CAS  PubMed  Google Scholar 

  • Agnati LF, Guidolin D, Genedani S, Ferré S, Bigiani A, Woods AS et al (2005b) How proteins come together in the plasma membrane and function in macromolecular assemblies: focus on receptor mosaics. J Mol Neurosci 26(2–3):133–154. doi:10.1385/JMN:26:2-3:133

    Article  CAS  PubMed  Google Scholar 

  • Agnati LF, Leo G, Zanardi A, Genedani S, Rivera A, Fuxe K et al (2006) Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiologica (Oxford, England) 187(1-2):329–344. doi:10.1111/j.1748-1716.2006.01579.x

    CAS  Google Scholar 

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8(2):128–140. doi:10.1038/nrn2059

    Article  CAS  PubMed  Google Scholar 

  • Baldo BA, Koob GF, Markou A (1999) Role of adenosine A2 receptors in brain stimulation reward under baseline conditions and during cocaine withdrawal in rats. J Neurosci 19:11017–11026

    CAS  PubMed  Google Scholar 

  • Biegon A, Dillon K, Volkow ND, Hitzemann RJ, Fowler JS, Wolf AP (1992) Quantitative autoradiography of cocaine-binding sites in human brain postmortem. Synapse 10(2):126–130. doi:10.1002/syn.890100207

    Article  CAS  PubMed  Google Scholar 

  • Bjelke B, Goldstein M, Tinner B, Andersson C, Sesack SR, Steinbusch HW et al (1996) Dopaminergic transmission in the rat retina: evidence for volume transmission. J Chem Neuroanat 12(1):37–50. doi:10.1016/S0891-0618(96)00176-7

    Article  CAS  PubMed  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Bergman J (1999) Effects of dopamine D(1-like) and D(2-like) agonists in rats that self-administer cocaine. J Pharmacol Exp Ther 291(1):353–360

    CAS  PubMed  Google Scholar 

  • Canals M, Marcellino D, Fanelli F, Ciruela F, de Benedetti P, Goldberg SR et al (2003) Adenosine A2A-dopamine D2 receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Biol Chem 278:46741–46749. doi:10.1074/jbc.M306451200

    Article  CAS  PubMed  Google Scholar 

  • Ciruela F, Burgueno J, Casado V, Canals M, Marcellino D, Goldberg SR et al (2004) Combining mass spectrometry and pulldown techniques for the study of receptor heteromerization. Direct epitope-epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal Chem 76:5354–5363. doi:10.1021/ac049295f

    Article  CAS  PubMed  Google Scholar 

  • Ciruela F, Canela L, Burgueño J, Soriguera A, Cabello N, Canela EI et al (2005) Heptaspanning membrane receptors and cytoskeletal/scaffolding proteins: focus on adenosine, dopamine, and metabotropic glutamate receptor function. J Mol Neurosci 26(2–3):277–292. doi:10.1385/JMN:26:2-3:277

    Article  CAS  PubMed  Google Scholar 

  • Corrigall WA, Coen KM (1991) Cocaine self-administration is increased by both D1 and D2 dopamine antagonists. Pharmacol Biochem Behav 39(3):799–802

    Article  CAS  PubMed  Google Scholar 

  • De Vries TJ, Schoffelmeer AN, Binnekade R, Vanderschuren LJ (1999) Dopaminergic mechanisms mediating the incentive to seek cocaine and heroin following long-term withdrawal of IV drug self-administration. Psychopharmacology (Berl) 143(3):254–260. doi:10.1007/s002130050944

    Article  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85(14):5274–5278

    Article  PubMed  Google Scholar 

  • Filip M, Frankowska M, Zaniewska M, Przegalinski E, Muller CE, Agnati L et al (2006) Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine. Brain Res 1077:67–80. doi:10.1016/j.brainres.2006.01.038

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Tinner B, Janson AM, Agnati LF (1993) Codistribution of choleratoxin binding sites and tyrosine hydroxylase/FGF-2 immunoreactive nigral nerve cells. NeuroReport 4(7):857–860

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Ferré S, Canals M, Torvinen M, Terasmaa A, Marcellino D et al (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26(2–3):209–220. doi:10.1385/JMN:26:2-3:209

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A et al (2007) From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brains Res Rev 55(1):17–54. doi:10.1016/j.brainresrev.2007.02.009

    Article  CAS  Google Scholar 

  • Genedani S, Guidolin D, Leo G, Filaferro M, Torvinen M, Woods AS et al (2005) Computer-assisted image analysis of caveolin-1 involvement in the internalization process of adenosine A2A-dopamine D2 receptor heterodimers. J Mol Neurosci 26(2–3):177–184. doi:10.1385/JMN:26:2-3:177

    Article  CAS  PubMed  Google Scholar 

  • Gustavsson L (1990) Brain lipid changes after ethanol exposure. Ups J Med Sci Suppl 48:245–266

    CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2005) The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci 77(14):1612–1624. doi:10.1016/j.lfs.2005.05.009

    Article  CAS  PubMed  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A et al (2002) Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277(20):18091–18097. doi:10.1074/jbc.M107731200

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162(8):1403–1413

    Article  PubMed  Google Scholar 

  • Kamiya T, Saitoh O, Yoshioka K, Nakata H (2003) Oligomerization of adenosine A2A and dopamine D2 receptors in living cells. Biochem Biophys Res Commun 306(2):544–549. doi:10.1016/S0006-291X(03)00991-4

    Article  CAS  PubMed  Google Scholar 

  • Knapp CM, Foye MM, Cottam N, Ciraulo DA, Kornetsky C (2001) Adenosine agonists CGS 21680 and NECA inhibit the initiation of cocaine self-administration. Pharmacol Biochem Behav 68(4):797–803. doi:10.1016/S0091-3057(01)00486-5

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242(4879):715–723. doi:10.1126/science.2903550

    Article  CAS  PubMed  Google Scholar 

  • Landmann L (2002) Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J Microsc 208(Pt 2):134–147. doi:10.1046/j.1365-2818.2002.01068.x

    Article  CAS  PubMed  Google Scholar 

  • Loland CJ, Desai RI, Zou MF, Cao J, Grundt P, Gerstbrein K et al (2008) Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors. Mol Pharmacol 73(3):813–823. doi:10.1124/mol.107.039800

    Article  CAS  PubMed  Google Scholar 

  • Madras BK, Fahey MA, Bergman J, Canfield DR, Spealman RD (1989) Effects of cocaine and related drugs in nonhuman primates. I. [3H]cocaine binding sites in caudate-putamen. J Pharmacol Exp Ther 251(1):131–141

    CAS  PubMed  Google Scholar 

  • Manders EMM, Verbeek EJ, Aten JA (1993) Measurement of colocalization of objects in dual-colour confocal images. J Microsc 169:375–382

    Google Scholar 

  • Mann PS (2004) Introductory statistics, 5th edn. Willey, J., and Sons, Hobokin, NJ

    Google Scholar 

  • Marcellino D, Roberts DC, Navarro G, Filip M, Agnati L, Lluís C et al (2007a) Increase in A2A receptors in the nucleus accumbens after extended cocaine self-administration and its disappearance after cocaine withdrawal. Brain Res 1143:208–220. doi:10.1016/j.brainres.2007.01.079

    Article  CAS  PubMed  Google Scholar 

  • Marcellino D, Narvarro G, Sahlholm K, Nilsson J, Agnati LF, Lluis C et al (2007b) Cocaine functions as a possible allosteric agonist at dopamine receptors. Annual Society for Neuroscience Meeting, San Diego, California, pp 3–7

    Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572. doi:10.1038/42408

    Article  CAS  PubMed  Google Scholar 

  • Torvinen M, Kozell LB, Neve KA, Agnati LF, Fuxe K (2004) Biochemical identification of the dopamine D2 receptor domains interacting with the adenosine A2A receptor. J Mol Neurosci 24(2):173–180. doi:10.1385/JMN:24:2:173

    Article  CAS  PubMed  Google Scholar 

  • Torvinen M, Torri C, Tombesi A, Marcellino D, Watson S, Lluis C et al (2005) Trafficking of adenosine A2A and dopamine D2 receptors. J Mol Neurosci 25(2):191–200. doi:10.1385/JMN:25:2:191

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J et al (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14(2):169–177

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R et al (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386(6627):830–833. doi:10.1038/386830a0

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L et al (2003) Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci 23(36):11461–11468

    CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F (2009) Imaging dopamine's role in drug abuse and addiction. Neuropharmacology 56(Suppl 1):3–8. doi:10.1016/j.neuropharm.2008.05.022

    Article  CAS  PubMed  Google Scholar 

  • Webb RH, Dorey CK (1995) The pixelated image. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum Press, New York, pp 55–67

    Google Scholar 

  • Weerts EM, Griffiths RR (2003) The adenosine receptor antagonist CGS15943 reinstates cocaine-seeking behavior and maintains self-administration in baboons. Psychopharmacology (Berlin) 168(1–2):155–163. doi:10.1007/s00213-003-1410-5

    Article  CAS  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296(5568):678–682. doi:10.1126/science.1063545

    Article  CAS  PubMed  Google Scholar 

  • Woodward JJ, Compton DM, Balster RL, Martin BR (1995) In vitro and in vivo effects of cocaine and selected local anesthetics on the dopamine transporter. Eur J Pharmacol 277(1):7–13. doi:10.1016/0014-2999(95)00042-J

    Article  CAS  PubMed  Google Scholar 

  • Zink CF, Pagnoni G, Martin ME, Dhamala M, Berns GS (2003) Human striatal response to salient nonrewarding stimuli. J Neurosci 23(22):8092–8097

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper has been supported by grants from PRIN2006 (MIUR, Roma, Italy); IRCCS San Camillo (Venezia, Italy) and Swedish Research Council (Stockholm, Sweden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Francesco Agnati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genedani, S., Carone, C., Guidolin, D. et al. Differential Sensitivity of A2A and Especially D2 Receptor Trafficking to Cocaine Compared with Lipid Rafts in Cotransfected CHO Cell Lines. Novel Actions of Cocaine Independent of the DA Transporter. J Mol Neurosci 41, 347–357 (2010). https://doi.org/10.1007/s12031-010-9328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9328-y

Keywords

Navigation