Skip to main content

Advertisement

Log in

Effect of Memantine on the Levels of Neuropeptides and Microglial Cells in the Brain Regions of Rats with Neuropathic Pain

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neuropathic pain induced by sciatic nerve injury not only causes peripheral dysfunctions but also affects the cortical and subcortical regions of the brain. It is still unknown whether neuropathic pain could relate to behavioral and neurochemical alterations in the central nervous system. This paper deals with the effect of peripheral neuropathic pain on mechanical allodynia, neuropeptide levels, neuropeptide-degrading enzyme activities, and microglial cells in the brain regions of rats by applying chronic constriction injury, a partial sciatic nerve injury. We examined the possible protection effect on the allodynia and changes in levels of neuropeptides and microglial activation in chronic constriction injury of the rat brain by memantine. On 4 days after chronic constriction injury, the induction of mechanical allodynia was suppressed by memantine treatment. Reductions in the substance P in the hypothalamus and somatostatin in the periaqueductal gray of chronic constriction injury rat brain were reversed by memantine. This suggests the role of these neuropeptides in pain information processing in the brain. Immunohistochemical experiments revealed that the expression of CD11b, a marker protein of microglia, was increased in the hypothalamus and periaqueductal gray in the chronic constriction injury rat brain as compared with the controls, and memantine treatment could suppress the activation of microglia, suggesting the involvement of microglia in pain mechanism. The present behavioral, biochemical, and immunohistochemical studies demonstrated that peripheral neuropathic pain affects the neuropeptide levels and microglial activation in the brain regions, and these events described above may play an important role in neuropathic pain pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AMC:

7-Amino-4-methylcoumarin

anti-SOM:

Antisomatostatin

anti-SP:

Antisubstance P

BSA:

Bovine serum albumin

CCI:

Chronic constriction injury

CNS:

Central nervous system

DAB:

3,3′-Diaminobenzidine

EIA:

Enzyme immunoassay

GABA:

γ-Aminobutyric acid

HRP:

Horseradish peroxidase

NMDA:

N-Methyl-d-aspartate

PAG:

Periaqueductal gray

PBS:

Phosphate-buffered saline

PNS:

Peripheral nervous system

POP:

Prolyl oligopeptidase

SOM:

Somatostatin

SOM-LI:

SOM-like immunoreactivity

SP:

Substance P

SP-LI:

SP-like immunoreactivity

Suc-Gly-Pro-MCA:

Succinylglycyl-l-proline 4-methylcoumaryl-7-amide

References

  • Ahmed, M. M., Hoshino, H., Chikuma, T., Yamada, M., & Kato, T. (2004). Effect of memantine on the levels of glial cells, neuropeptides, and peptide-degrading enzymes in rat brain regions of ibotenic acid-treated Alzheimer’s disease model. Neuroscience, 126, 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Alzate, O., Hussain, S. R., Goettl, V. M., et al. (2004). Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. Molecular Brain Research, 128, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Ambalavanar, R., Dessem, D., Moutanni, A., et al. (2006). Muscle inflammation induces a rapid increase in calcitonin gene-related peptide (CGRP) mRNA that temporally relates to CGRP immunoreactivity and nociceptive behavior. Neuroscience, 143, 875–884.

    Article  PubMed  CAS  Google Scholar 

  • Auld, D. S., & Robitaille, R. (2003). Glial cells and neurotransmission: an inclusive view of synaptic function. Neuron, 40, 389–400.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G. J., & Xie, Y. K. (1988). A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 33, 87–107.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi, M., Sotgui, M. L., Manfredi, B., & Sacerdote, P. (1996). Peripheral mononeuropathy affects hypothalamic and splenocyte beta-endorphin levels but not immune function in the rat. Brain Research Bulletin, 40, 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D. G., & Krupp, J. J. (2006). N-Methyl-d-aspartate receptor (NMDA) antagonists as potential pain therapeutics. Current Topics in Medicinal Chemistry, 6, 749–770.

    Article  PubMed  CAS  Google Scholar 

  • Bucinskaite, V., Lundeberg, T., Stenfors, C., Belfrage, M., Hansson, P., & Theodorsson, E. (1995). Changes of neuropeptide concentrations in the brain following experimentally induced mononeuropathy in Wistar Kyoto and spontaneously hypertensive rats. Neuroscience Letters, 192, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Carlton, S. M., & Hargett, G. L. (1995). Treatment with the NMDA antagonist memantine attenuates nociceptive responses to mechanical stimulation in neuropathic rats. Neuroscience Letters, 198, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Caruso, C., Durand, D., Watanobe, H., & Lasaga, M. (2006). NMDA and group I metabotropic glutamate receptors activation modulates substance P release from the arcuate nucleus and median eminence. Neuroscience Letters, 393, 60–64.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, D. E. (2007). Spinal cord transcriptional profile analysis reveals protein trafficking and RNA processing as prominent processes regulated by tactile allodynia. Neuroscience, 144, 144–156.

    Article  PubMed  CAS  Google Scholar 

  • Crack, P. J., Wu, T. J., Cummins, P. M., et al. (1999). The association of metalloendopeptidase EC 3.4.24.15 at the extracellular surface of the AtT-20 cell plasma membrane. Brain Research, 835, 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Dahms, P., & Mentlein, R. (1992). Purification of the main somatostatin-degrading protease from rat and pig brains, their action on other neuropeptides, and their identification as endopeptidases 24.15 and 24.16. European Journal of Biochemistry, 208, 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E. M., & Carlton, S. M. (1998). Intraplantar injection of dextrorphan, ketamine, or memantine attenuates formalin-induced behaviors. Brain Research, 785, 136–142.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, W. J. (1980). Efficient analysis of experimental observations. Annual Review of Pharmacology and Toxicology, 20, 441–462.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, E., LaCross, S., & Strassman, A. M. (1995). The clinically tested N-methyl-d-aspartate receptor antagonist memantine blocks and reverses thermal hyperalgesia in a rat model of painful mono-neuropathy. Neuroscience Letters, 187, 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, D., Chiozzi, P., Falzoni, S., et al. (1997). Extracellular ATP triggers IL-1β release by activation the purinergic P2Z receptor of human macrophages. The Journal of Immunology, 159, 1451–1458.

    PubMed  CAS  Google Scholar 

  • Finnerup, N. B., & Jensen, T. S. (2004). Spinal cord injury pain-mechanisms and treatment. European Journal of Neurology, 11, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre, J. T. (1986). The role of glutamate in neurotransmission and in neurologic disease. Archives of Neurology, 43, 1058–1063.

    PubMed  CAS  Google Scholar 

  • Hains, B. C., Yucra, J. A., & Hulsebosch, C. E. (2001). Reduction of pathological and behavioral deficits following spinal cord contusion injury with the selective cyclooxygenase-2 inhibitor NS-398. Journal of Neurotrauma, 18, 409–423.

    Article  PubMed  CAS  Google Scholar 

  • Hains, B. C., Klein, J. P., Saab, C. Y., Craner, M. J., Black, J. A., & Waxman, S. G. (2003a). Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. The Journal of Neuroscience, 23, 8881–8892.

    PubMed  CAS  Google Scholar 

  • Hains, B. C., Willis, W. D., & Hulsebosch, C. E. (2003b). Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat. Experimental Brain Research, 149, 174–186.

    CAS  Google Scholar 

  • Hartree, E. F. (1972). Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochemistry, 48, 422–427.

    Article  PubMed  CAS  Google Scholar 

  • Helmchen, C., Fu, Q. G., & Sandkuhler, J. (1995). Inhibition of spinal nociceptive neurons by microinjections of somatostatin into the nucleus raphe magnus and the midbrain periaqueductal gray of the anesthetized cat. Neuroscience Letters, 187, 137–141.

    Article  PubMed  CAS  Google Scholar 

  • Hua, X. Y., Chen, P., Marsala, M., & Yaksh, T. L. (1999). Intrathecal substance P-induced thermal hyperalgesia and spinal release of prostaglandin E2 and amino acids. Neuroscience, 89, 525–534.

    Article  PubMed  CAS  Google Scholar 

  • Ji, R. R., Kohno, T., Moore, K. A., & Woolf, C. J. (2003). Central sensitization and LPT: Do pain and memory share similar mechanisms? Trends in Neurosciences, 26, 696–705.

    Article  PubMed  CAS  Google Scholar 

  • Kato, T. (2004). Memantine: a therapeutic drug for Alzheimer’s disease and the comparison with MK-801. Folia Pharmacologica Japonica, 124, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Kato, T., Nakano, T., Kojima, K., Nagatsu, T., & Sakakibara, S. (1980). Changes in prolyl endopeptidase during maturation of rat brain and hydrolysis of substance P by the purified enzymes. Journal of Neurochemistry, 35, 527–535.

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg, G. W. (1996). Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Mantyh, P. W., & Hunt, S. P. (2004). Setting the tone: Superficial dorsal horn projection neurons regulate pain sensitivity. Trends in Neurosciences, 27, 582–584.

    Article  PubMed  CAS  Google Scholar 

  • Medvedev, I. O., Malyshkin, A. A., Belozertseva, I. V., et al. (2004). Effects of low-affinity NMDA receptor channel blockers in two rat models of chronic pain. Neuropharmacology, 47, 175–183.

    Article  PubMed  CAS  Google Scholar 

  • Milligan, E. D., Zapata, V., Chacur, M., et al. (2004). Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. European Journal of Neuroscience, 20, 2294–2302.

    Article  PubMed  CAS  Google Scholar 

  • Minami, T., Okuda-Ashitaka, E., Hori, Y., et al. (1999). Involvement of primary afferent C-fibers in touch-evoked pain (allodynia) induced by prostaglandin E2. European Journal of Neuroscience, 11, 1849–1856.

    Article  PubMed  CAS  Google Scholar 

  • Obata, H., Eisenach, J. C., Hussain, H., Bynum, T., & Vincler, M. (2006). Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. The Journal of Pain, 7, 816–822.

    Article  PubMed  CAS  Google Scholar 

  • Onley, J. W., Labruyere, J., Wang, G., Wozniak, D. F., Price, M. T., & Sesma, M. A. (1991). NMDA antagonist neurotoxicity: Mechanism and prevention. Science, 254, 1515–1518.

    Article  Google Scholar 

  • Panerai, A. E., Sacerdote, P., Brini, A., Bianchi, M., & Mantegazza, P. (1988). Central nervous system neuropeptides after peripheral nerve deafferentiation. Peptides, 9, 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., & Watson, C. (1986). The rat brain in stereotaxic coordinates (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Petrenko, A. B., Yamakura, T., Baba, H., & Shimoji, K. (2003). The role of N-methyl-d-aspartate (NMDA) receptors in pain: A review. Anesthesia & Analgesia, 97, 1108–1116.

    Article  CAS  Google Scholar 

  • Raghavendra, V., Tanga, F., & DeLeo, J. A. (2003a). Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy. The Journal of Pharmacology and Experimental Therapeutics, 306, 624–630.

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra, V., Tanga, F., Rutkowski, M. D., & DeLeo, J. A. (2003b). Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain, 104, 655–664.

    Article  PubMed  CAS  Google Scholar 

  • Restuccia, D., Di Lazzaro, V., Valeriani, M., Tonali, P., & Mauguiere, F. (1992). Segmental dysfunction of the cervical cord revealed by abnormalities of the spinal N13 potential in cervical spondylotic myelopathy. Neurology, 42, 1054–1063.

    PubMed  CAS  Google Scholar 

  • Rosen, A., Zhang, Y. X., Lund, I., Lundeberg, T., & Yu, L. C. (2004). Substance P microinjected into the periaqueductal gray matter induces antinociception and is released following morphine administration. Brain Research, 1001, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Saito, T., Iwata, N., Tsubuki, S., et al. (2005). Somatostatin regulates brain amyloid βpeptide Aβ42 through modulation of proteolytic degradation. Nature Medicine, 11, 434–439.

    Article  PubMed  CAS  Google Scholar 

  • Samad, T. A., Moore, K. A., Sapirstein, A., et al. (2001). Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature, 410, 471–475.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, Z., Dubner, R., & Shir, Y. (1990). A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 43, 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Sotgui, M. L. (1993). Descending influence on dorsal horn neuronal hyperactivity in a rat model of neuropathic pain. Neuroreport, 4, 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, C. I., Hua, X. Y., Protter, A. A., Powell, H. C., & Yaksh, T. L. (2003). Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE2 release and thermal hyperalgesia. Neuroreport, 14, 1153–1157.

    Article  PubMed  CAS  Google Scholar 

  • Sweitzer, S. M., Colburn, R. W., Rutkowski, M., & DeLeo, J. A. (1999). Acute peripheral inflammation induces moderate glial activation and spinal IL-1β expression that correlates with pain behavior in the rat. Brain Research, 829, 209–221.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Uchiumi, F., Takita, M., & Kato, T. (1989). A rapid enzyme immunoassay for cholecystokinin octapeptide sulfate. Neurochemistry International, 15, 55–60.

    Article  CAS  Google Scholar 

  • Tseng, S. H. (1998). Suppression of autotomy by N-methyl-d-aspartate receptor antagonist (MK-801) in the rat. Neuroscience Letters, 240, 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, H., & Inoue, M. (2001). Animal models and peripheral nociception tests for the study of neuropathic pain. Folia Pharmacologica Japonica, 118, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Wall, J. T., Xu, J., & Wang, X. (2002). Human brain plasticity: An emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body. Brain Research Reviews, 39, 181–215.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, L. R., Milligan, E. D., & Maier, S. F. (2001). Glial activation: A driving force for pathological pain. Trends in Neurosciences, 24, 450–455.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S. G., & Hains, B. C. (2006). Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends in Neurosciences, 29, 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. A., Garry, E. M., Anderson, H. A., et al. (2005). NMDA receptor antagonist treatment at the time of nerve injury prevents injury-induced changes in spinal NR1 and NR2B subunit expression and increases the sensitivity of residual pain behaviours to subsequently administered NMDA receptor antagonists. Pain, 117, 421–432.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, C. J., & Salter, M. W. (2000). Neuronal plasticity: Increasing the gain in pain. Science, 288, 1765–1768.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Dr. Akira Tanaka for his valuable and helpful advice on the experiments and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Chikuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, K., Muramatsu, M., Chikuma, T. et al. Effect of Memantine on the Levels of Neuropeptides and Microglial Cells in the Brain Regions of Rats with Neuropathic Pain. J Mol Neurosci 39, 380–390 (2009). https://doi.org/10.1007/s12031-009-9224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9224-5

Keywords

Navigation