Skip to main content

Advertisement

Log in

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Alters Parasympathetic Neuron Gene Expression in a Time-dependent Fashion

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), can influence diverse cellular processes over a broad temporal range. In ciliary ganglion (CG) neurons, for example, PACAP binding to high-affinity PAC1 receptors triggers transduction cascades that both rapidly modulate nicotinic receptors and synapses and support long-term survival. Since PACAP/PAC1 signaling recruits intracellular messengers and effectors that potently alter transcription, we examined its activation of the transcription factor CREB and then tested for changes in gene expression. PACAP/PAC1 signaling rapidly induced prolonged CREB activation in CG neurons by a phospholipase C -independent mechanism supported by Ca2+-influx, adenylate cyclase, and effectors, including protein kinase C (PKC) and possibly PKA. Since PACAP is abundant in the CG and released from depolarized presynaptic terminals, it is well suited to regulate gene expression relevant to neuronal and synaptic development. Gene array screens conducted using RNA from CG cultures grown with PACAP for 1/4, 24, or 96 h revealed a time-dependent pattern of >600 regulated transcripts, including several encoding proteins implicated in synaptic function, neuronal survival, and development. The results underscore rapid, neuromodulatory, and long-term, neurotrophic consequences of PAC1 signaling in CG neurons and suggest that PACAP exerts such diverse influences by altering the expression of specific gene transcripts in a time-dependent fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Balment, R. J., Song, W., & Ashton, N. (2005). Urotensin II: Ancient hormone with new functions in vertebrate body fluid regulation. Annals of the New York Academy of Sciences, 1040, 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Beaudet, M. M., Braas, K. M., & May, V. (1998). Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. Journal of Neurobiology, 36, 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Bito, H., & Takemoto, K. S. (2003). Ca2+/CREB/CBP-dependent gene regulation: A shared mechanism critical in long-term synaptic plasticity and neruonal survival. Cell Calcium, 34, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Bito, H., Deisseroth, K., & Tsien, R. W. (1996). CREB phosphorylation and dephosphorylation: A Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell, 87, 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  • Blanquet, P. R., Mariani, J., & Derer, P. (2003). A calcium/calmodulin kinase pathway connects brain-derived neurotrophic factor to the cyclic AMP-responsive transcription factor in the rat hippocampus. Neuroscience, 118, 477–490.

    Article  PubMed  CAS  Google Scholar 

  • Braas, K. M., Schutz, K. C., Bond, J. P., Vizzard, M. A., Girard, B. M., & May, V. (2007). Microarray analyses of pituitary adenylate cyclase activating polypeptide (PACAP)-regulated gene targets in sympathetic neurons. Peptides, 28, 1856–1870.

    Article  PubMed  CAS  Google Scholar 

  • Brandenburg, C. A., May, V., & Braas, K. M. (1997). Identification of endogenous sympathetic neuron pituitary adenylate cyclase-activating polypeptide (PACAP): Depolarization regulates production and secretion through induction of multiple propeptide transcripts. Journal of Neuroscience, 17, 4045–4055.

    PubMed  CAS  Google Scholar 

  • Chang, K., & Berg, D. (2001). Voltage-gated channels block nicotinic regulation of CREB phosphorylation and gene expression in neurons. Neuron, 32, 855–865.

    Article  PubMed  CAS  Google Scholar 

  • Chao, D., Bazzy-Asaad, A., Balboni, G., & Xia, Y. (2007). Delta-, but not mu-, opioid receptor stabilizes K(+) homeostasis by reducing Ca(2+) influx in the cortex during acute hypoxia. Journal of Cellular Physiology, 212, 60–67.

    Article  PubMed  CAS  Google Scholar 

  • Charron, C., Messier, C., & Plamondon, H. (2008). Neuroprotection and functional recovery conferred by administration of kappa- and delta1-opioid agonists in a rat model of global ischemia. Physiology & Behavior, 93, 502–511.

    Article  CAS  Google Scholar 

  • Chatterjee, T. K., Sharma, R. V., & Fisher, R. A. (1996). Molecular cloning of a novel variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor that stimulates calcium influx by activation of L-type calcium channels. Journal of Biological Chemistry, 271, 32226–32232.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M., Pugh, P., & Margiotta, J. (2001). Nicotinic synapses formed between chick ciliary ganglion neurons in culture resemble those present on the neurons in vivo. Journal of Neurobiology, 47, 265–279.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Samal, B., Hamelink, C. R., Xiang, C. C., Chen, Y., Chen, M., et al. (2006). Neuroprotection by endogenous and exogenous PACAP following stroke. Regulatory Peptides, 137, 4–19.

    Article  PubMed  CAS  Google Scholar 

  • Coggan, J., Bartol, T., Esquenazi, E., Stiles, J., Lamont, S., Martone, M., et al. (2005). Evidence for ectopic neurotransmission at a neuronal synapse. Science, 309, 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Conroy, W. G., Nai, Q., Ross, B., Naughton, G., & Berg, D. K. (2007). Postsynaptic neuroligin enhances presynaptic inputs at neuronal nicotinic synapses. Developments in Biologicals, 307, 79–91.

    Article  CAS  Google Scholar 

  • Couturier, S., Erkman, L., Valera, S., Rungger, D., Bertrand, S., Boulter, J., et al. (1990a). a5, a3, and non-a3: Three clustered avian genes encoding nicotinic acetylcholine receptor-related subunits. Journal of Biological Chemistry, 265, 17560–17567.

    PubMed  CAS  Google Scholar 

  • Couturier, S., Bertrand, D., Matter, J.-M., Hernandez, M.-C., Bertrand, S., Millar, N., et al. (1990b). A neuronal nicotinic acetylcholine receptor subunit (a7) is developmentally regulated and forms a homo-oligomeric channel blocked by a-Btx. Neuron, 5, 847–856.

    Article  PubMed  CAS  Google Scholar 

  • Dani, J. A., & Heinemann, S. (1996). Molecular and cellular aspects of nicotine abuse. Neuron, 16, 905–908.

    Article  PubMed  CAS  Google Scholar 

  • Dani, J. A., Ji, D., & Zhou, F. M. (2001). Synaptic plasticity and nicotine addiction. Neuron, 31, 349–352.

    Article  PubMed  CAS  Google Scholar 

  • Das, S., Grunert, M., Williams, L., & Vincent, S. R. (1997). NMDA and D1 receptors regulate the phosphorylation of CREB and the induction of c-fos in striatal neurons in primary culture. Synapse, 25, 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S., Reddy, H., Caivano, M., & Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal, 351, 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Deisseroth, K., Bito, H., & Tsien, R. (1996). Signaling from synapse to nucleus: Postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron, 16, 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Deisseroth, K., Heist, E. K., & Tsien, R. W. (1998). Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature, 392, 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Deisseroth, K., Mermelstein, P. G., Xia, H., & Tsien, R. W. (2003). Signaling from synapse to nucleus: The logic behind the mechanisms. Current Opinion in Neurobiology, 13, 354–365.

    Article  PubMed  CAS  Google Scholar 

  • Dittus, J. J., Pugh, P. C., Howard, M. J., Margiotta, J. F. (2002). Parasympathetic ciliary ganglion neurons express trks but neurotrophins fail to fully support their survival. Society for Neuroscience Abstracts 28.

  • Dryer, S. E. (1994). Functional development of the parasympathetic neurons of the avian ciliary ganglion: A classic model system for the study of neuronal differentiation and development. Progress in Neurobiology, 43, 281–322.

    Article  PubMed  CAS  Google Scholar 

  • Feany, M. B., & Quinn, W. G. (1995). A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science, 268, 869–873.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, T., Takahashi, K., Suzuki, T., Saruta, M., Watanabe, M., Nakata, T., et al. (2005). Urocortin 1, urocortin 3/stresscopin, and corticotropin-releasing factor receptors in human adrenal and its disorders. Journal of Clinical Endocrinology and Metabolism, 90, 4671–4678.

    Article  PubMed  CAS  Google Scholar 

  • Grumolato, L., Elkahloun, A. G., Ghzili, H., Alexandre, D., Coulouarn, C., Yon, L., et al. (2003). Microarray and suppression subtractive hybridization analyses of gene expression in pheochromocytoma cells reveal pleiotropic effects of pituitary adenylate cyclase-activating polypeptide on cell proliferation, survival, and adhesion. Endocrinology, 144, 2368–2379.

    Article  PubMed  CAS  Google Scholar 

  • Hamelink, C., Tjurmina, O., Damadzic, R., Young, W., Weihe, E., Lee, H.-W., et al. (2002). Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proceedings of the National Academy of Sciences of the United States of America, 99, 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt, T., Broberger, C., Xu, Z. D., Sergeyev, V., Ubink, R., & Diez, M. (2000). Neuropeptides- an overview. Neuropharmacology, 39, 1337–1356.

    Article  PubMed  CAS  Google Scholar 

  • Ishido, M., & Masuo, Y. (2004). Transcriptome of pituitary adenylate cyclase-activating polypeptide-differentiated PC12 cells. Regulatory Peptides, 123, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Jokic, N., Gonzalez de Aguilar, J. L., Dimou, L., Lin, S., Fergani, A., Ruegg, M. A., et al. (2006). The neurite outgrowth inhibitor Nogo-A promotes denervation in an amyotrophic lateral sclerosis model. EMBO Reports, 7, 1162–1167.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E., & Abel, T. (1995). Neuropeptides, adenylyl cyclase, and memory storage. Science, 268, 825–826.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, Y., Kohno, T., Zhuang, Z. Y., Brenner, G. J., Wang, H., Van Der Meer, C., et al. (2004). Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. Journal of Neuroscience, 24, 8310–8321.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M.-S., Cheong, Y.-P., So, H.-S., Lee, K.-M., Son, Y., Lee, C.-S., et al. (2002). Regulation of cyclic AMP-dependent response element binding protein (CREB) by the nociceptin/orphanin FQ in human dopaminergic SH-SY5Y cells. Biochemical and Biophysical Research Communications, 291, 663–668.

    Article  PubMed  CAS  Google Scholar 

  • Landmesser, L., & Pilar, G. (1974). Synaptic transmission and cell death during normal ganglionic development. Journal of Physiology, 241, 737–749.

    PubMed  CAS  Google Scholar 

  • Lee, M. L., Badache, A., & DeVries, G. H. (1999). Phosphorylation of CREB in axon-induced Schwann cell proliferation. Journal of Neuroscience, 55, 702–712.

    Article  CAS  Google Scholar 

  • Legradi, G., Hannibal, J., & Lechan, R. M. (1998). Pituitary adenylate cyclase-activating polypeptide-nerve terminals densely innervate corticotropin-releasing hormone-neurons in the hypothalamic paraventricular nucleus of the rat. Neuroscience Letters, 246, 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Margiotta, J., & Howard, M. (2005). BMP4 supports noradrenergic differentiation by a PKA-independent mechanism. Developments in Biologicals, 286, 521–536.

    Article  CAS  Google Scholar 

  • Lu, Y.-F., Kandel, E. R., & Hawkins, R. D. (1999). Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. Journal of Neuroscience, 19, 10250–10261.

    PubMed  CAS  Google Scholar 

  • Mao, L. M., Tang, Q., & Wang, J. Q. (2007). Protein kinase C-regulated cAMP response element-binding protein phosphorylation in cultured rat striatal neurons. Brain Research Bulletin, 72, 302–308.

    Article  PubMed  CAS  Google Scholar 

  • Margiotta, J., & Pardi, D. (1995). Pituitary adenylate cyclase-activating polypeptide type I receptors mediate cyclic AMP-dependent enhancement of neuronal acetylcholine sensitivity. Molecular Pharmacology, 48, 63–71.

    PubMed  CAS  Google Scholar 

  • Margiotta, J. F., & Berg, D. K. (1986). Enkephalin and substance P modulate synaptic properties of chick ciliary ganglion neurons in cell culture. Neuroscience, 18, 175–782.

    Article  PubMed  CAS  Google Scholar 

  • Mayr, B., & Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nature, 2, 599–609.

    CAS  Google Scholar 

  • McGehee, D., & Role, L. (1995). Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annual Review of Physiology, 57, 521–546.

    Article  PubMed  CAS  Google Scholar 

  • McGehee, D., Heath, M., Gelber, S., Devay, P., & Role, L. (1995). Nicotinic enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science, 269, 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  • Meriney, S. D., & Pilar, G. (1987). Cholinergic innervation of the smooth muscle cells in the choroid coat of the chick eye and its development. Journal of Neuroscience, 7, 3827–3839.

    PubMed  CAS  Google Scholar 

  • Mioduszewska, B., Jaworski, J., & Kaczmarek, L. (2003). Inducible cAMP early repressor (ICER) in the nervous system—A transcriptional regulator of neuronal plasticity and programmed cell death. Journal of Neurochemistry, 87, 1313–1320.

    Article  PubMed  CAS  Google Scholar 

  • Moller, K., Reimer, M., Hannibal, J., Fahrenkrug, J., Sundler, F., & Kanje, M. (1997). Pituitary adenylate cyclase-activating peptide (PACAP) and PACAP type 1 receptor expression in regenerating adult mouse and rat superior cervical ganglia in vitro. Brain Research, 775, 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, T. K., MacKenzie, C. J., Plevin, R., & Lutz, E. M. (2008). PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. Journal Neurochemistry, 104, 74–88.

    CAS  Google Scholar 

  • Moro, O., & Lerner, E. A. (1997). Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. Journal of Biological Chemistry, 272, 966–970.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, R., & Berg, D. K. (1981). Two components from eye tissue that differentially stimulate the growth and development of ciliary ganglion neurons in cell culture. Journal of Neuroscience, 1, 505–513.

    PubMed  CAS  Google Scholar 

  • Obara, Y., Horgan, A. M., & Stork, P. J. (2007). The requirement of Ras and Rap1 for the activation of ERKs by cAMP, PACAP, and KCl in cerebellar granule cells. Journal of Neurochemistry, 101, 470–482.

    Article  PubMed  CAS  Google Scholar 

  • Pardi, D., & Margiotta, J. F. (1999). Pituitary adenylate cyclase-activating polypeptide activates a phospholipase C-dependent signal pathway in chick ciliary ganglion neurons that selectively inhibits α7-containing nicotinic receptors. Journal of Neuroscience, 19, 6327–6337.

    PubMed  CAS  Google Scholar 

  • Peeters, K., Gerets, H. H. J., Arckens, L., & Vandesande, F. (2000). Distribution of pituitary adenylate cyclase-activating polypeptide and pituitary adenylate cyclase-activating polypeptide type I receptor mRNA in the chicken brain. Journal of Comparative Neurology, 423, 66–82.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, P., & Margiotta, J. (2000). Nicotinic acetylcholine receptor agonists promote survival and reduce apoptosis of chick ciliary ganglion neurons. Molecular and Cellular Neurosciences, 15, 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, P., & Margiotta, J. (2006a). PACAP support of neuronal survival requires MAPK- and activity-generated signals. Molecular and Cellular Neurosciences, 31, 586–595.

    Article  PubMed  CAS  Google Scholar 

  • Pugh, P., & Margiotta, J. (2006b). Long-lating enhancement of synaptic transmission in chick ciliary ganglion neurons by the neuropeptide PACAP. Society for Neuroscience Abstract Viewer, A-2794.

  • Pugh, P., & Margiotta, J. (2007). PACAP produces long-lasting enhancement of synaptic transmission in ganglionic neurons. 8th International Symposium for VIP, PACAP and Related Peptides, Manchester, VT.

  • Pugh, P., Zhou, X., Jayakar, S., & Margiotta, J. (2006). Depolarization promotes survival of ciliary ganglion neurons by BDNF-dependent and -independent mechanisms. Developmental Biology, 291, 182–191.

    Article  PubMed  CAS  Google Scholar 

  • Rassadi, S., Krishnaswamy, A., Pié, B., McConnell, R., Jacob, M. H., & Cooper, E. (2005). A null mutation for the alpha3 nicotinic acetylcholine (ACh) receptor gene abolishes fast synaptic activity in sympathetic ganglia and reveals that ACh output from developing preganglionic terminals is regulated in an activity-dependent retrograde manner. Journal of Neuroscience, 25, 8555–8566.

    Article  PubMed  CAS  Google Scholar 

  • Ravni, A., Bourgault, S., Lebon, A., Chan, P., Galas, L., Fournier, A., et al. (2006). The neurotrophic effects of PACAP in PC12 cells: Control by multiple transduction pathways. Journal of Neurochemistry, 98, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Robberecht, P., Gourlet, P., De Neef, P., Woussen-Colle, M.-C., Vandermeers-Piret, M.-C., Vandermeers, A., et al. (1992). Structural requirements for the occupancy of pituitary adenylate cyclase-activating peptide (PACAP) receptors and adenylate cyclase activation in human neuroblastoma NB-OK-1 cell membranes. Discovery of PACAP(6-38) as a potent antagonist. European Journal of Biochemistry, 207, 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, P. B. (1993). The diversity of neuronal nicotinic acetylcholine receptors. Annual Review of Neuroscience, 16, 403–443.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, A. A., & Howard, M. J. (2006). Perspectives on integration of cell extrinsic and cell intrinsic pathways of signaling required for differentiation of noradrenergic sympathetic ganglion neurons. Autonomic Neuroscience, 126–127, 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer, E., Alder, J., Greengard, P., & Poo, M.-M. (1994). Synapsin IIa accelerates functional development of neuromuscular synapses. Proceedings of the National Academy of Sciences of the United States of America, 91, 3882–3886.

    Article  PubMed  CAS  Google Scholar 

  • Scheiffele, P., Fan, J., Choih, J., Fetter, R., & Serafini, T. (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell, 101, 657–669.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, L., & Colman, D. R. (1999). The diversity of cadherins and implications for a synaptic adhesive code in the CNS. Neuron, 23, 427–430.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, L., Love, J., & Colman, D. R. (2007). Adhesion molecules in the nervous system: Structural insights into function and diversity. Annual Reviews of Neuroscience, 30, 451–474.

    Article  CAS  Google Scholar 

  • Shaywitz, A., & Greenberg, M. E. (1999). CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual Reviews of Biochemical, 68, 821–861.

    Article  CAS  Google Scholar 

  • Shi, G. X., Rehmann, H., & Andres, D. A. (2006). A novel cyclic AMP-dependent epac-rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Molecular and Cellular Biology, 26, 9136–9147.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L. R., Bloom, F. E., McConnell, S. K., Roberts, J. L., Spitzer, N. C., Zigmond, M. J., eds (2003). Fundamental neuroscience. San Diego: Elsevier Science.

  • Ster, J., De Bock, F., Guerineau, N. C., Janossy, A., Barrere-Lemaire, S., Bos, J. L., et al. (2007). Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+channels in cerebellar neurons. Proceedings of the National Academy of Sciences of the United States of America, 104, 2519–2524.

    Article  PubMed  CAS  Google Scholar 

  • Stone, E. M., Rothblum, K. N., Alevy, M. C., Kuo, T. M., & Schwartz, R. J. (1985). Complete coding sequence of the chicken glyceraldehyde-3-phosphate dehydrogenase gene. Proceedings of the National Academy of Sciences of the United States of America, 82, 1628–1632.

    Article  PubMed  CAS  Google Scholar 

  • Sumner, A., Przepyszny, L., Margiotta, J. (2004). PACAP localizes to presynaptic terminals and activates CREB in ciliary ganglion neurons. Society for Neuroscience Abstract Viewer 2004, 847.814.

  • Ullian, E. M., McIntosh, J. M., & Sargent, P. B. (1997). Rapid synaptic transmission in the avian ciliary ganglion is mediated by two distinct classes of nicotinic receptors. Journal of Neuroscience, 17, 7210–7219.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000a). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Chen, Y., Ravni, A., Hamelink, C., Elkahloun, A. G., & Eiden, L. E. (2002). Analysis of the PC12 cell transcriptome after differentiation with pituitary adenylate cyclase-activating polypeptide (PACAP). Journal of Neurochemistry, 83, 1272–1284.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B., Basille, M., Pamantung, T., Fontaine, M., Fournier, A., et al. (2000b). The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED-related cysteine protease caspase-3/CPP32. Proceedings of the National Academy of Sciences of the United States of America, 97, 13390–13395.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Chan, C., Taylor, J., & Chan, S. (2008). Localization of Nogo and its receptor in the optic pathway of mouse embryos. Journal of Neuroscience Research, 86, 1721–1733.

    Article  PubMed  CAS  Google Scholar 

  • Wentzek, L. A., Bowers, C. W., Khairallah, L., & Pilar, G. (1993). Choroid tissue supports the survival of ciliary ganglion neurons in vitro. Journal of Neuroscience, 13, 3143–3154.

    PubMed  CAS  Google Scholar 

  • Woo, S., & Margiotta, J. (2007). PACAP elevates calcium in ciliary ganglion neurons by PAC1-mediated signaling. 8th International Symposium for VIP, PACAP and Related Peptides. Manchester, VT.

  • Wu, G. Y., Deisseroth, K., & Tsien, R. W. (2001). Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 98, 2808–2813.

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., & Rothstein, T. L. (1995). Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated surface Ig. Journal of Immunology, 154, 1717–1723.

    CAS  Google Scholar 

  • Zauli, G., Milani, D., Mirandola, P., Mazzoni, M., Secchiero, P., Miscia, S., et al. (2001). HIV-1 Tat protein down-regulates CREB transcription factor expression in PC12 neuronal cells through a phosphatidylinositol 3-kinase/AKT/cyclic nucleoside phosphodiesterase pathway. FASEB Journal, 15, 483–491.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X., Nai, Q., Chen, M., Dittus, J. D., Howard, M. J., & Margiotta, J. F. (2004). Brain-derived neurotrophic factor and trkB signaling in parasympathetic neurons: Relevance to regulating α7-containing nicotinic receptors and synaptic function. Journal of Neuroscience, 24, 4340–4350.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Support was provided by NIH grants R01-DA015536 and R21-DA022280 to JFM. We thank Dr. Gail Adams for technical assistance, and Drs. Marthe Howard and Phyllis Pugh for helpful comments on the work and manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph F. Margiotta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Parasympathetic neuron transcripts regulated by PACAP treatment. The fold increase or decrease in transcripts produced by each of the indicated PACAP treatments is depicted with values of ≥1.50 or ≤−1.50, respectively. For simplicity, transcripts from treatments that were at levels not significantly different those in untreated controls (p > 0.05) are listed with a value of 1. Asterisks (*) depict cases where PACAP up- or down-regulated the indicated transcript by more than 3-fold (see Table 2).(DOC 1.3 MB)

Supplementary Figure 1

PACAP regulates gene expression relevant to a range of cellular functions. Pie chart depicts up- or down-regulated CG neuronal transcripts assigned to 12 functional categories. Wedge areas represent the percent representation within each category relative to all regulated transcripts (N = 672).(PDF 40 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumner, A.D., Margiotta, J.F. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Alters Parasympathetic Neuron Gene Expression in a Time-dependent Fashion. J Mol Neurosci 36, 141–156 (2008). https://doi.org/10.1007/s12031-008-9103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9103-5

Keywords

Navigation