Skip to main content

Advertisement

Log in

Peroxiredoxin 2 is Involved in the Neuroprotective Effects of PACAP in Cultured Cerebellar Granule Neurons

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is known to counteract in vitro the deleterious effects of toxic agents on cerebellar granule cell survival and differentiation. The potent antiapoptotic action of PACAP is mediated through inhibition of caspase-3 activity; however, additional proteins are likely involved and remain to be identified. Two-dimensional gel electrophoresis analysis coupled with mass spectrometry characterization led to the identification of a protein, peroxiredoxin 2, which was induced after a 6-h treatment with PACAP. Western blot analysis confirmed the regulation of peroxiredoxin 2 by PACAP and revealed that this protein is induced by both cyclic AMP and protein kinase C stimulators. Inhibition of peroxiredoxin 2 expression, using two distinct small-interfering RNAs (siRNAs), reduced the effect of PACAP on caspase-3 activity and cerebellar granule cell survival. Peroxiredoxin 2 expression was also induced in vivo and in vitro by ethanol. Although ethanol and PACAP exert opposite effects on caspase-3 activity, inhibition of peroxiredoxin 2 expression, using siRNAs, only reduced the ability of PACAP to prevent ethanol-induced caspase-3 activity. Taken together, these data indicate that peroxiredoxin 2 is probably involved in the neurotrophic effect of PACAP and suggest that this protein may have a therapeutic potential for the treatment of some neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

2-D:

two-dimensional

PACAP:

pituitary adenylate cyclase-activating polypeptide

PMA:

phorbol 12-myristate 13-acetate

Prx 2:

peroxiredoxin 2

References

  • Basille, M., Gonzalez, B. J., Fournier, A., & Vaudry, H. (1994). Ontogeny of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in the rat cerebellum: A quantitative autoradiographic study. Developmental Brain Research, 82, 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Bast, A., Wolf, G., Oberbaumer, I., & Walther, R. (2002). Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetologia, 45, 867–876.

    Article  PubMed  CAS  Google Scholar 

  • Bénard, M., Gonzalez, B. J., Schouft, M. T., et al. (2004). Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Journal of Biological Chemistry, 279, 43487–43496.

    Article  PubMed  CAS  Google Scholar 

  • Borges, S., & Lewis, P. D. (1983). Effects of ethanol on postnatal cell acquisition in the rat cerebellum. Brain Research, 271, 388–391.

    Article  PubMed  CAS  Google Scholar 

  • Boulos, S., Meloni, B. P., Arthur, P. G., Bojarski, C., & Knuchey, N. W. (2007). Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. Journal of Neuroscience Research, 85, 3089–3097.

    Article  PubMed  CAS  Google Scholar 

  • Bourgault, S., Vaudry, D., Botia, B., et al. (2008). Novel stable PACAP analogs with potent activity towards the PAC1 receptors. Peptides, (in press).

  • Butterfield, L. H., Merino, A., Golub, S. H., & Shau, H. (1999). From cytoprotection to tumor suppression: The multifactorial role of peroxiredoxins. Antioxidants & Redox Signalling, 1, 385–402.

    Article  CAS  Google Scholar 

  • Cavallaro, S., Copani, A., D'Agata, V., et al. (1996). Pituitary adenylate cyclase-activating polypeptide prevents apoptosis in cultured cerebellar granule neurons. Molecular Pharmacology, 50, 60–66.

    PubMed  CAS  Google Scholar 

  • Chae, H. Z., Chung, S. J., & Rhee, S. G. (1994a). Thioredoxin-dependent peroxide reductase from yeast. Journal of Biological Chemistry, 269, 27670–27678.

    PubMed  CAS  Google Scholar 

  • Chae, H. Z., Kim, I. H., Kim, K., & Rhee, S. G. (1993). Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. Journal of Biological Chemistry, 268, 16815–16821.

    PubMed  CAS  Google Scholar 

  • Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G., & Rhee, S. G. (1994b). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proceedings of the National Academy of Sciences of the United States of America, 91, 7017–7021.

    Article  PubMed  CAS  Google Scholar 

  • Dietz, K. J., Horling, F., Konig, J., & Baier, M. (2002). The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. Journal of Experimental Botany, 53, 1321–1329.

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel, A., Aubert, N., Vaudry, D., et al. (2004). Opposite regulation of the mitochondrial apoptotic pathway by C2-ceramide and PACAP through a MAP-kinase-dependent mechanism in cerebellar granule cells. Journal of Neurochemistry, 91, 1231–1243.

    Article  PubMed  CAS  Google Scholar 

  • Falluel-Morel, A., Vaudry, D., Aubert, N., et al. (2005). Pituitary adenylate cyclase-activating polypeptide prevents the effects of ceramides on migration, neurite outgrowth, and cytoskeleton remodeling. Proceedings of the National Academy of Sciences of the United States of America, 102, 2637–2642.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, B. J., Basille, M., Vaudry, D., Fournier, A., & Vaudry, H. (1997). Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience, 78, 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Guerri, C. (1998). Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 22, 304–312.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Z., Lelievre, V., Rodriguez, W. I., et al. (2001). Embryonic expression of pituitary adenylyl cyclase-activating polypeptide and its selective type I receptor gene in the frog Xenopus laevis neural tube. Journal of Comparative Neurology, 441, 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Ichimiya, S., Davis, J. G., O'Rourke, D. M., Katsumata, M., & Greene, M. I. (1997). Murine thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of the brain most susceptible to hypoxic and ischemic injury. DNA and Cell Biology, 16, 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou, C., Bittigau, P., Ishimaru, M. J., et al. (2000). Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science, 287, 1056–1060.

    Article  PubMed  CAS  Google Scholar 

  • Jin, M. H., Lee, Y. H., Kim, J. M., et al. (2005). Characterization of neural cell types expressing peroxiredoxins in mouse brain. Neuroscience Letters, 381, 252–257.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. W., Chae, H. Z., Seo, M. S., Kim, K., Baines, I. C., & Rhee, S. G. (1998). Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. Journal of Biological Chemistry, 273, 6297–6302.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. W., Chang, T. S., Lee, T. H., Kim, E. S., Yu, D. Y., & Rhee, S. G. (2004). Cytosolic peroxiredoxin attenuates the activation of JNK and p38 and potentiates that of ERK in Hela cells stimulated with tumor necrosis factor-a. Journal of Biological Chemistry, 279, 2535–2543.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. W., Rhee, S. G., Chang, T., Jeong, W., & Choi, M. H. (2005). 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Molecular Medicine, 11, 571–578.

    CAS  Google Scholar 

  • Kim, S. H., Fountoulakis, M., Cairns, N., & Lubec, G. (2001). Protein levels of human peroxiredoxin subtypes in brains of patients with Alzheimer's disease and Down syndrome. Journal of Neural Transmission Supplementum, 16, 223–235.

    Google Scholar 

  • Komuro, H., & Rakic, P. (1998). Distinct modes of neuronal migration in different domains of developing cerebellar cortex. Journal of Neuroscience, 18, 1478–1490.

    PubMed  CAS  Google Scholar 

  • Krapfenbauer, K., Engidawork, E., Cairns, N., Fountoulakis, M., & Lubec, G. (2003). Aberrant expression of peroxiredoxin subtypes in neurodegenerative disorders. Brain Research, 967, 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Kuida, K., Zheng, T. S., Na, S., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Leyens, G., Donnay, I., & Knoops, B. (2003). Cloning of bovine peroxiredoxins-gene expression in bovine tissues and amino acid sequence comparison with rat, mouse and primate peroxiredoxins. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 136, 943–955.

    Article  CAS  Google Scholar 

  • Liesi, P. (1997). Ethanol-exposed central neurons fail to migrate and undergo apoptosis. Journal of Neuroscience Research, 48, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Mei, Y. A., Vaudry, D., Basille, M., et al. (2004). PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP. European Journal of Neuroscience, 19, 1446–1458.

    Article  PubMed  CAS  Google Scholar 

  • Miyata, A., Arimura, A., Dahl, R. R., et al. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 164, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Mooney, S. M., & Miller, M. W. (2001). Effects of prenatal exposure to ethanol on the expression of bcl2, bax and caspase 3 in the developing rat cerebral cortex and thalamus. Brain Research, 911, 71–81.

    Article  PubMed  CAS  Google Scholar 

  • Morio, H., Tatsuno, I., Hirai, A., Tamura, Y., & Saito, Y. (1996). Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Research, 741, 82–88.

    Article  PubMed  CAS  Google Scholar 

  • Sarafian, T. A., Verity, M. A., Vinters, H. V., et al. (1999). Differential expression of peroxiredoxin subtypes in human brain cell types. Journal of Neuroscience Research, 56, 206–212.

    PubMed  CAS  Google Scholar 

  • Schneider, D., Gerhardt, E., Bock, J., et al. (2004). Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis. Cell Death and Differentiation, 11, 760–770.

    Article  PubMed  CAS  Google Scholar 

  • Sheward, W. J., Lutz, E. M., Copp, A. J., & Harmar, A. J. (1998). Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Brain Res Dev, 109, 245–253.

    Article  CAS  Google Scholar 

  • Spitzer, N. C. (2006). Electrical activity in early neuronal development. Nature, 444, 707–712.

    Article  PubMed  CAS  Google Scholar 

  • Sultana, R., Boyd-Kimball, D., Cai, J., et al. (2007). Proteomics analysis of the Alzheimer's disease hippocampal proteome. Journal of Alzheimer's Disease, 2, 153–164.

    Google Scholar 

  • Tatsuno, I., Somogyvari-Vigh, A., & Arimura, A. (1994). Developmental changes of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor in the rat brain. Peptides, 15, 55–60.

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele, J., De Preter, K., Pattyn, F., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3, 0034.

    Article  Google Scholar 

  • Vaudry, D., Falluel-Morel, A., Basille, M., et al. (2003). Pituitary adenylate cyclase-activating polypeptide prevents C2-ceramide-induced apoptosis of cerebellar granule cells. Journal of Neuroscience Research, 72, 303–316.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Anouar, Y., Fournier, A., & Vaudry, H. (1998). Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience, 84, 801–812.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Fournier, A., & Vaudry, H. (1999). Neurotrophic activity of pituitary adenylate cyclase-activating polypeptide on rat cerebellar cortex during development. Proceedings of the National Academy of Sciences of the United States of America, 96, 9415–9420.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Fournier, A., & Vaudry, H. (2000a). Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to function. Pharmacological Reviews, 52, 269–324.

    PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Pamantung, T. F., Fontaine, M., Fournier, A., et al. (2000b). The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proceedings of the National Academy of Sciences of the United States of America, 97, 13390–13395.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Pamantung, T. F., Basille, M., Rousselle, C., Fournier, A., Vaudry, H., et al. (2002a). PACAP protects cerebellar granule neurons against oxidative stress-induced apoptosis. European Journal of Neuroscience, 15, 1451–1460.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Rousselle, C., Basille, M., Falluel-Morel, A., Pamantung, T. F., Fontaine, M., et al. (2002b). Pituitary adenylate cyclase-activating polypeptide protects rat cerebellar granule neurons against ethanol-induced apoptotic cell death. Proceedings of the National Academy of Sciences of the United States of America, 99, 6398–6403.

    Article  PubMed  CAS  Google Scholar 

  • Villalba, M., Bockaert, J., & Journot, L. (1997a). Concomitant induction of apoptosis and necrosis in cerebellar granule cells following serum and potassium withdrawal. Neuroreport, 8, 981–985.

    Article  PubMed  CAS  Google Scholar 

  • Villalba, M., Bockaert, J., & Journot, L. (1997b). Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. Journal of Neuroscience, 17, 83–90.

    PubMed  CAS  Google Scholar 

  • Yaka, R., He, D. Y., Phamluong, K., & Ron, D. (2003). Pituitary adenylate cyclase-activating polypeptide (PACAP(1–38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. Journal of Biological Chemistry, 278, 9630–9638.

    Article  PubMed  CAS  Google Scholar 

  • Yao, J., Taylor, M., Davey, F., et al. (2007). Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates up-regulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Molecular and Cellular Neurosciences, 35, 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Liu, B., Kang, S. W., Seo, M. S., Rhee, S. G., & Obeid, L. M. (1997). Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of bcl2. Journal of Biological Chemistry, 272, 30615–30618.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by INSERM (U413), the European Institute for Peptide Research (IFRMP23), the Institut de Recherches Scientifiques sur les Boissons (IREB), an Interreg 3A FEDER project, the ANR (06-JCJC-0071), and the Conseil Régional de Haute-Normandie. The work was conducted with the technical support of the proteomic facility of the IFRMP23 and the Platform for Cell Imaging of Haute-Normandie. BB was a recipient of a doctoral fellowship from the Société Française d’Alcoologie and a fellowship from the Fondation pour la Recherche Médicale. We thank Dr Mickaël Naassila for the quantification of ethanol level in blood samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hubert Vaudry or David Vaudry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botia, B., Seyer, D., Ravni, A. et al. Peroxiredoxin 2 is Involved in the Neuroprotective Effects of PACAP in Cultured Cerebellar Granule Neurons. J Mol Neurosci 36, 61–72 (2008). https://doi.org/10.1007/s12031-008-9075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9075-5

Keywords

Navigation