Skip to main content

Advertisement

Log in

p38 Mitogen-Activated Protein Kinase Regulates Myelination

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The p38 mitogen-activated protein kinase family is emerging as a crucial signaling molecule for a vast number of cellular functions including cell migration, proliferation, and differentiation. The function of p38 in myelination has only been recently addressed. Using pyridinyl imidazole-based p38 α/β selective inhibitors, we have reported a critical role for this kinase in the regulation of myelination, specifically, in controlling the differentiation of Schwann cells, and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. These compounds inhibited the accumulation of myelin-cell-specific markers, including myelin-specific glycosphingolipids, myelin-associated glycoprotein, and myelin basic protein. More significantly, myelination of dorsal root ganglia neurons by oligodendrocytes was irreversibly blocked by p38 inhibitors. Our current studies are focusing on the molecular mechanisms by which p38 regulates oligodendrocyte and Schwann cell differentiation and its role in models of myelination and remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

Caspr:

Contactin associated protein

CGT:

UDP galactose:ceramide galactosyltransferase

CNP:

2′,3′-cyclic nucleotide 3′-phosphodiesterase

CNS:

central nervous system

DAPI:

4,6-diamidino-2-phenylindole dihydrochloride

DRG:

dorsal root ganglion

DRGN:

DRG neuron

ERK:

extracellular signal regulated kinase

FGF:

fibroblast growth factor

GalC:

galactosylceramide, galactocerebroside

HSP27:

heat shock protein 27

JNK:

c-jun N-terminal kinase

MAG:

myelin-associated glycoprotein

MAPK:

mitogen-activated protein kinase

MAPKAPK2/3:

MAPK activated protein kinase 2/3

MBP:

myelin basic protein

MNK:

MAPK-interacting kinase

MOBP:

myelin-associated oligodendrocyte basic protein

MSK:

mitogen- and stress-activated protein kinase

NGF:

nerve growth factor

NFH:

neurofilament heavy-chain

OLG:

oligodendrocyte

OLP:

oligodendrocyte progenitor

PDGF:

platelet-derived growth factor

PNS:

peripheral nervous system

SC:

Schwann cell

References

  • Adams, R. H., Porras, A., & Alonso, G., et al. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Molecular Cell, 6, 109–116.

    PubMed  CAS  Google Scholar 

  • Ailhaud, G. (1990). Extracellular factors, signalling pathways and differentiation of adipose precursor cells. Current Opinion in Cell Biology, 2, 1043–1049.

    PubMed  CAS  Google Scholar 

  • Allen, M., Svensson, L., Roach, M., Hambor, J., McNeish, J., & Gabel, C. A. (2000). Deficiency of the stress kinase p38alpha results in embryonic lethality: Characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. Journal of Experimental Medicine, 191, 859–870.

    PubMed  CAS  Google Scholar 

  • Almazan, G., Mushynski, W., & Fragoso, G. (2003). The activity of mitogen-activated protein kinase p38 is critical for peripheral myelination. Glia(Suppl 2), 66–66.

  • Baron, W., Metz, B., Bansal, R., Hoekstra, D., & de Vries, H. (2000). PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: Regulation of proliferation and differentiation by multiple intracellular signaling pathways. Molecular and Cellular Neurosciences, 15, 314–329.

    PubMed  CAS  Google Scholar 

  • Beardmore, V. A., Hinton, H. J., & Eftychi, C., et al. (2005). Generation and characterization of p38beta (MAPK11) gene-targeted mice. Molecular and Cellular Biology, 25, 10454–10464.

    PubMed  CAS  Google Scholar 

  • Benninger, Y., Thurnherr, T., & Pereira, J. A., et al. (2007). Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. Journal of Cell Biology, 177, 1051–1061.

    PubMed  CAS  Google Scholar 

  • Berti-Mattera, L. N., Harwalkar, S., Hughes, B., Wilkins, P. L., & Almhanna, K. (2001). Proliferative and morphological effects of endothelins in Schwann cells: Roles of p38 mitogen-activated protein kinase and Ca(2+)-independent phospholipase A2. Journal of Neurochemistry, 79, 1136–1148.

    PubMed  CAS  Google Scholar 

  • Bhat, N. R., & Zhang, P. (1999). Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: Role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. Journal of Neurochemistry, 72, 112–119.

    PubMed  CAS  Google Scholar 

  • Bhat, N. R., Zhang, P., & Bhat, A. N. (1999). Cytokine induction of inducible nitric oxide synthase in an oligodendrocyte cell line: Role of p38 mitogen-activated protein kinase activation. Journal of Neurochemistry, 72, 472–478.

    PubMed  CAS  Google Scholar 

  • Bhat, N. R., Zhang, P., & Mohanty, S. B. (2007). p38 MAP kinase regulation of oligodendrocyte differentiation with CREB as a potential target. Neurochemical Research, 32, 293–302.

    PubMed  CAS  Google Scholar 

  • Bost, F., Aouadi, M., Caron, L., & Binetruy, B. (2005). The role of MAPKs in adipocyte differentiation and obesity. Biochimie, 87, 51–56.

    PubMed  CAS  Google Scholar 

  • Brust, T. B., Cayabyab, F. S., Zhou, N., & MacVicar, B. A. (2006). p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus. Journal of Neurochemistry, 26, 12427–12438.

    CAS  Google Scholar 

  • Buee-Scherrer, V., & Goedert, M. (2002). Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases in intact cells. FEBS Letter, 515, 151–154.

    CAS  Google Scholar 

  • Buxade, M., Parra, J. L., & Rousseau, S., et al. (2005). The Mnks are novel components in the control of TNF alpha biosynthesis and phosphorylate and regulate hnRNP A1. Immunity, 23, 177–189.

    PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil, P., Tikoo, R., Kiyokawa, H., Friedrich Jr., V., Chao, M. V., & Koff, A. (1997). Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes & Development, 11, 2335–2346.

    CAS  Google Scholar 

  • Cuenda, A., & Cohen, P. (1999). Stress-activated protein kinase-2/p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. Journal of Biological Chemistry, 274, 4341–4346.

    PubMed  CAS  Google Scholar 

  • Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., & Colombo, R. (2001). The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radical Biology & Medicine, 31, 1624–1632.

    CAS  Google Scholar 

  • Dean, J. L., Sully, G., Clark, A. R., & Saklatvala, J. (2004). The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cellular Signalling, 16, 1113–1121.

    PubMed  CAS  Google Scholar 

  • del Pozo, M. A., Alderson, N. B., Kiosses, W. B., Chiang, H. H., Anderson, R. G., & Schwartz, M. A. (2004). Integrins regulate Rac targeting by internalization of membrane domains. Science, 303, 839–842.

    PubMed  CAS  Google Scholar 

  • Eckert, R. L., Efimova, T., Balasubramanian, S., Crish, J. F., Bone, F., & Dashti, S. (2003). p38 Mitogen-activated protein kinases on the body surface—a function for p38 delta. Journal of Investigative Dermatology, 120, 823–828.

    PubMed  CAS  Google Scholar 

  • Efimova, T., Broome, A. M., & Eckert, R. L. (2003). A regulatory role for p38 delta MAPK in keratinocyte differentiation. Evidence for p38 delta-ERK1/2 complex formation. Journal of Biological Chemistry, 278, 34277–34285.

    PubMed  CAS  Google Scholar 

  • Einheber, S., Milner, T. A., Giancotti, F., & Salzer, J. L. (1993). Axonal regulation of Schwann cell integrin expression suggests a role for alpha 6 beta 4 in myelination. Journal of Cell Biology, 123, 1223–1236.

    PubMed  CAS  Google Scholar 

  • Einheber, S., Zanazzi, G., & Ching, W., et al. (1997). The axonal membrane protein Caspr, a homologue of neurexin IV, is a component of the septate-like paranodal junctions that assemble during myelination. Journal of Cell Biology, 139, 1495–1506.

    PubMed  CAS  Google Scholar 

  • Eldridge, C. F., Bunge, M. B., Bunge, R. P., & Wood, P. M. (1987). Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. Journal of Cell Biology, 105, 1023–1034.

    PubMed  CAS  Google Scholar 

  • Engel, F. B., Schebesta, M., & Duong, M. T., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19, 1175–1187.

    CAS  Google Scholar 

  • Engelman, J. A., Berg, A. H., Lewis, R. Y., Lin, A., Lisanti, M. P., & Scherer, P. E. (1999). Constitutively active mitogen-activated protein kinase kinase 6 (MKK6) or salicylate induces spontaneous 3T3-L1 adipogenesis. Journal of Biological Chemistry, 274, 35630–35638.

    PubMed  CAS  Google Scholar 

  • Engelman, J. A., Lisanti, M. P., & Scherer, P. E. (1998). Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. Journal of Biological Chemistry, 273, 32111–32120.

    PubMed  CAS  Google Scholar 

  • Feltri, M. L., Graus Porta, D., & Previtali, S. C., et al. (2002). Conditional disruption of beta 1 integrin in Schwann cells impedes interactions with axons. Journal of Cell Biology, 156, 199–209.

    PubMed  CAS  Google Scholar 

  • Feltri, M. L., Scherer, S. S., & Nemni, R., et al. (1994). Beta 4 integrin expression in myelinating Schwann cells is polarized, developmentally regulated and axonally dependent. Development, 120, 1287–1301.

    PubMed  CAS  Google Scholar 

  • Fragoso, G., Haines, J. D., Roberston, J., Pedraza, L., Mushynski, W. E., & Almazan, G. (2007). p38 mitogen-activated protein kinase is required for central nervous system myelination. Glia, 55, 1531–1541.

    PubMed  Google Scholar 

  • Fragoso, G., Martinez-Bermudez, A. K., & Liu, H. N., et al. (2004b). Developmental differences in HO-induced oligodendrocyte cell death: Role of glutathione, mitogen-activated protein kinases and caspase 3. Journal of Neurochemistry, 90, 392–404.

    PubMed  CAS  Google Scholar 

  • Fragoso, G., Mushynski, W. E., & Almazan, G. (2004a). Inhibition of p38 mitogen-activated protein kinase (MAPK) interferes with peripheral and central myelination. Journal of Neurochemistry, 90, 72.

    Google Scholar 

  • Fragoso, G., Mushynski, W. E., & Almazan, G. (2006). Central nervous system myelination requires p38 mitogen-activated protein kinase. Journal of Neurochemistry, 96, 56.

    Google Scholar 

  • Fragoso, G., Robertson, J., Athlan, E., Tam, E., Almazan, G., & Mushynski, W. E. (2003). Inhibition of p38 mitogen-activated protein kinase interferes with cell shape changes and gene expression associated with Schwann cell myelination. Experimental Neurology, 183, 34–46.

    PubMed  CAS  Google Scholar 

  • Fukunaga, M., Miyata, S., & Liu, B. F., et al. (2004). Methylglyoxal induces apoptosis through activation of p38 MAPK in rat Schwann cells. Biochemical and Biophysical Research Communications, 320, 689–695.

    PubMed  CAS  Google Scholar 

  • Giri, S., Khan, M., Rattan, R., Singh, I., & Singh, A. K. (2006). Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. Journal of Lipid Research, 47, 1478–1492.

    PubMed  CAS  Google Scholar 

  • Goedert, M., Hasegawa, M., Jakes, R., Lawler, S., Cuenda, A., & Cohen, P. (1997). Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Letter, 409, 57–62.

    CAS  Google Scholar 

  • Gonzalez, G. A., Yamamoto, K. K., & Fischer, W. H., et al. (1989). A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature, 337, 749–752.

    PubMed  CAS  Google Scholar 

  • Grethe, S., Ares, M. P., Andersson, T., & Porn-Ares, M. I. (2004). p38 MAPK mediates TNF-induced apoptosis in endothelial cells via phosphorylation and downregulation of Bcl-x(L). Experimental Cell Research, 298, 632–642.

    PubMed  CAS  Google Scholar 

  • Hamanoue, M., Sato, K., & Takamatsu, K. (2007). Inhibition of p38 mitogen-activated protein kinase-induced apoptosis in cultured mature oligodendrocytes using SB202190 and SB203580. Neurochemistry International, 51, 16–24.

    PubMed  CAS  Google Scholar 

  • Han, J., Lee, J. D., Bibbs, L., & Ulevitch, R. J. (1994). A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 265, 808–811.

    PubMed  CAS  Google Scholar 

  • Han, J., Lee, J. D., Tobias, P. S., & Ulevitch, R. J. (1993). Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. Journal of Biological Chemistry, 268, 25009–25014.

    PubMed  CAS  Google Scholar 

  • Hansen, T. O., Rehfeld, J. F., & Nielsen, F. C. (2000). Cyclic AMP-induced neuronal differentiation via activation of p38 mitogen-activated protein kinase. Journal of Neurochemistry, 75, 1870–1877.

    PubMed  CAS  Google Scholar 

  • Harrisingh, M. C., Perez-Nadales, E., Parkinson, D. B., Malcolm, D. S., Mudge, A. W., & Lloyd, A. C. (2004). The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO Journal, 23, 3061–3071.

    PubMed  CAS  Google Scholar 

  • Herdegen, T., & Leah, J. D. (1998). Inducible and constitutive transcription factors in the mammalian nervous system: Control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Research. Brain Research Reviews, 28, 370–490.

    PubMed  CAS  Google Scholar 

  • Hida, H., Nagano, S., Takeda, M., & Soliven, B. (1999). Regulation of mitogen-activated protein kinases by sphingolipid products in oligodendrocytes. Journal of Neuroscience, 19, 7458–7467.

    PubMed  CAS  Google Scholar 

  • Jurewicz, A., Matysiak, M., Tybor, K., & Selmaj, K. (2003). TNF-induced death of adult human oligodendrocytes is mediated by c-jun NH2-terminal kinase-3. Brain, 126, 1358–1370.

    PubMed  Google Scholar 

  • Kamaraju, A. K., Adjalley, S., Zhang, P., Chebath, J., & Revel, M. (2004). C/EBP-delta induction by gp130 signaling. Role in transition to myelin gene expressing phenotype in a melanoma cell line model. Journal of Biological Chemistry, 279, 3852–3861.

    PubMed  CAS  Google Scholar 

  • Keren, A., Tamir, Y., & Bengal, E. (2006). The p38 MAPK signaling pathway: A major regulator of skeletal muscle development. Molecular and Cellular Endocrinology, 252, 224–230.

    PubMed  CAS  Google Scholar 

  • Lee, E. R., McCool, K. W., Murdoch, F. E., & Fritsch, M. K. (2006). Dynamic changes in histone H3 phosphoacetylation during early embryonic stem cell differentiation are directly mediated by mitogen- and stress-activated protein kinase 1 via activation of MAPK pathways. Journal of Biological Chemistry, 281, 21162–21172.

    PubMed  CAS  Google Scholar 

  • Lee, S. H., Park, J., Che, Y., Han, P. L., & Lee, J. K. (2000). Constitutive activity and differential localization of p38alpha and p38beta MAPKs in adult mouse brain. Journal of Neuroscience Research, 60, 623–631.

    PubMed  CAS  Google Scholar 

  • Ligon, K. L., Fancy, S. P., Franklin, R. J., & Rowitch, D. H. (2006). Olig gene function in CNS development and disease. Glia, 54, 1–10.

    PubMed  Google Scholar 

  • Lluis, F., Perdiguero, E., Nebreda, A. R., & Munoz-Canoves, P. (2006). Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends in Cell Biology, 16, 36–44.

    PubMed  CAS  Google Scholar 

  • Maruyama, M., Sudo, T., Kasuya, Y., Shiga, T., Hu, B., & Osada, H. (2000). Immunolocalization of p38 MAP kinase in mouse brain. Brain Research, 887, 350–358.

    PubMed  CAS  Google Scholar 

  • Menegoz, M., Gaspar, P., & Le Bert, M., et al. (1997). Paranodin, a glycoprotein of neuronal paranodal membranes. Neuron, 19, 319–331.

    PubMed  CAS  Google Scholar 

  • Miskimins, R., Srinivasan, R., Marin-Husstege, M., Miskimins, W. K., & Casaccia-Bonnefil, P. (2002). p27(Kip1) enhances myelin basic protein gene promoter activity. Journal of Neuroscience Research, 67, 100–105.

    PubMed  CAS  Google Scholar 

  • Molnar, A., Theodoras, A. M., Zon, L. I., & Kyriakis, J. M. (1997). Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. Journal of Biological Chemistry, 272, 13229–13235.

    PubMed  CAS  Google Scholar 

  • Morooka, T., & Nishida, E. (1998). Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. Journal of Biological Chemistry, 273, 24285–24288.

    PubMed  CAS  Google Scholar 

  • Mudgett, J. S., Ding, J., & Guh-Siesel, L., et al. (2000). Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 97, 10454–10459.

    PubMed  CAS  Google Scholar 

  • Myers, R. R., Sekiguchi, Y., & Kikuchi, S., et al. (2003). Inhibition of p38 MAP kinase activity enhances axonal regeneration. Experimental Neurology, 184, 606–614.

    PubMed  CAS  Google Scholar 

  • Nebreda, A. R., & Porras, A. (2000). p38 MAP kinases: Beyond the stress response. Trends in Biochemical Sciences, 25, 257–260.

    PubMed  CAS  Google Scholar 

  • Nishida, K., Yamaguchi, O., & Hirotani, S., et al. (2004). p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Molecular and Cellular Biology, 24, 10611–10620.

    PubMed  CAS  Google Scholar 

  • Nodari, A., Zambroni, D., & Quattrini, A., et al. (2007). Beta1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. Journal of Cell Biology, 177, 1063–1075.

    PubMed  CAS  Google Scholar 

  • Ono, K., & Han, J. (2000). The p38 signal transduction pathway: Activation and function. Cellular Signalling, 12, 1–13.

    PubMed  CAS  Google Scholar 

  • Parkinson, D. B., Bhaskaran, A., & Droggiti, A., et al. (2004). Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. Journal of Cell Biology, 164, 385–394.

    PubMed  CAS  Google Scholar 

  • Pearce, A. K., & Humphrey, T. C. (2001). Integrating stress-response and cell-cycle checkpoint pathways. Trends in Cell Biology, 11, 426–433.

    PubMed  CAS  Google Scholar 

  • Perdiguero, E., Ruiz-Bonilla, V., & Gresh, L., et al. (2007). Genetic analysis of p38 MAP kinases in myogenesis: Fundamental role of p38alpha in abrogating myoblast proliferation. EMBO Journal, 26, 1245–1256.

    PubMed  CAS  Google Scholar 

  • Peters, J. M., Lee, S. S., & Li, W., et al. (2000). Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Molecular and Cellular Biology, 20, 5119–5128.

    PubMed  CAS  Google Scholar 

  • Poolos, N. P., Bullis, J. B., & Roth, M. K. (2006). Modulation of h-channels in hippocampal pyramidal neurons by p38 mitogen-activated protein kinase. Journal of Neuroscience, 26, 7995–8003.

    PubMed  CAS  Google Scholar 

  • Previtali, S. C., Feltri, M. L., Archelos, J. J., Quattrini, A., Wrabetz, L., & Hartung, H. (2001). Role of integrins in the peripheral nervous system. Progress in Neurobiology, 64, 35–49.

    PubMed  CAS  Google Scholar 

  • Rousseau, S., Peggie, M., Campbell, D. G., Nebreda, A. R., & Cohen, P. (2005). Nogo-B is a new physiological substrate for MAPKAP-K2. Biochemical Journal, 391, 433–440.

    PubMed  CAS  Google Scholar 

  • Roux, P. P., & Blenis, J. (2004). ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68, 320–344.

    PubMed  CAS  Google Scholar 

  • Russell, J. W., Cheng, H. L., & Golovoy, D. (2000). Insulin-like growth factor-I promotes myelination of peripheral sensory axons. Journal of Neuropathology and Experimental Neurology, 59, 575–584.

    PubMed  CAS  Google Scholar 

  • Sabio, G., Arthur, J. S., & Kuma, Y., et al. (2005). p38gamma regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP. EMBO Journal, 24, 1134–1145.

    PubMed  CAS  Google Scholar 

  • Saluja, I., Granneman, J. G., & Skoff, R. P. (2001). PPAR delta agonists stimulate oligodendrocyte differentiation in tissue culture. Glia, 33, 191–204.

    PubMed  CAS  Google Scholar 

  • Schieven, G. L. (2005). The biology of p38 kinase: A central role in inflammation. Curr Top Med Chem, 5, 921–928.

    PubMed  CAS  Google Scholar 

  • Shaywitz, A. J., & Greenberg, M. E. (1999). CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annual Reviews of Biochemical, 68, 821–861.

    CAS  Google Scholar 

  • Sheng, M., & Greenberg, M. E. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron, 4, 477–485.

    PubMed  CAS  Google Scholar 

  • Stanton, L. A., Underhill, T. M., & Beier, F. (2003). MAP kinases in chondrocyte differentiation. Developments in Biologicals, 263, 165–175.

    Article  CAS  Google Scholar 

  • Stolt, C. C., Rehberg, S., & Ader, M., et al. (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes & Development, 16, 165–170.

    CAS  Google Scholar 

  • Subang, M. C., & Richardson, P. M. (2001). Influence of injury and cytokines on synthesis of monocyte chemoattractant protein-1 mRNA in peripheral nervous tissue. European Journal of Neuroscience, 13, 521–528.

    PubMed  CAS  Google Scholar 

  • Tamura, K., Sudo, T., Senftleben, U., Dadak, A. M., Johnson, R., & Karin, M. (2000). Requirement for p38alpha in erythropoietin expression: A role for stress kinases in erythropoiesis. Cell, 102, 221–231.

    PubMed  CAS  Google Scholar 

  • Tew, S. R., & Hardingham, T. E. (2006). Regulation of SOX9 mRNA in human articular chondrocytes involving p38 MAPK activation and mRNA stabilization. Journal of Biological Chemistry, 281, 39471–39479.

    PubMed  CAS  Google Scholar 

  • Thurnherr, T., Benninger, Y., & Wu, X., et al. (2006). Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. Journal of Neuroscience, 26, 10110–10119.

    PubMed  CAS  Google Scholar 

  • Topilko, P., Schneider-Maunoury, S., & Levi, G., et al. (1994). Krox-20 controls myelination in the peripheral nervous system. Nature, 371, 796–799.

    PubMed  CAS  Google Scholar 

  • Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., Nagata, S., & Fukunaga, R. (2004). Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Molecular and Cellular Biology, 24, 6539–6549.

    PubMed  CAS  Google Scholar 

  • Uziyel, Y., Hall, S., & Cohen, J. (2000). Influence of laminin-2 on Schwann cell-axon interactions. Glia, 32, 109–121.

    PubMed  CAS  Google Scholar 

  • Vela, J. M., Molina-Holgado, E., Arevalo-Martin, A., Almazan, G., & Guaza, C. (2002). Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells. Molecular and Cellular Neurosciences, 20, 489–502.

    PubMed  CAS  Google Scholar 

  • Ventura, J. J., Tenbaum, S., & Perdiguero, E., et al. (2007). p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nature Genetics, 39, 750–758.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Hongo, I., Kidokoro, Y., & Okamoto, H. (2005). Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis. Developmental Biology, 277, 508–521.

    PubMed  CAS  Google Scholar 

  • Wegner, M. (2000). Transcriptional control in myelinating glia: Flavors and spices. Glia, 31, 1–14.

    PubMed  CAS  Google Scholar 

  • Wei, Q., Miskimins, W. K., & Miskimins, R. (2004). Sox10 acts as a tissue-specific transcription factor enhancing activation of the myelin basic protein gene promoter by p27Kip1 and Sp1. Journal of Neuroscience Research, 78, 796–802.

    PubMed  CAS  Google Scholar 

  • Wiggin, G. R., Soloaga, A., Foster, J. M., Murray-Tait, V., Cohen, P., & Arthurm, J. S. (2002). MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Molecular and Cellular Biology, 22, 2871–2881.

    PubMed  CAS  Google Scholar 

  • Woodley, D., Sauder, D., Talley, M. J., Silver, M., Grotendorst, G., & Qwarnstrom, E. (1983). Localization of basement membrane components after dermal-epidermal junction separation. Journal of Investigative Dermatology, 81, 149–153.

    PubMed  CAS  Google Scholar 

  • Wu, Z., Woodring, P. J., & Bhakta, K. S., et al. (2000). p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Molecular and Cellular Biology, 20, 3951–3964.

    PubMed  CAS  Google Scholar 

  • Wynne, P. (2006). p38 mitogen-activated protein kinase: A novel modulator of hyperpolarization-activated cyclic nucleotide-gated channels and neuronal excitability. Journal of Neuroscience, 26, 11253–11254.

    PubMed  CAS  Google Scholar 

  • Xu, H., Wu, X. R., Wewer, U. M., & Engvall, E. (1994). Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nature Genetics, 8, 297–302.

    PubMed  CAS  Google Scholar 

  • Yamada, H., Denzer, A. J., & Hori, H., et al. (1996). Dystroglycan is a dual receptor for agrin and laminin-2 in Schwann cell membrane. Journal of Biological Chemistry, 271, 23418–23423.

    PubMed  CAS  Google Scholar 

  • Yee, A. S., Paulson, E. K., & McDevitt, M. A., et al. (2004). The HBP1 transcriptional repressor and the p38 MAP kinase: Unlikely partners in G1 regulation and tumor suppression. Gene, 336, 1–13.

    PubMed  CAS  Google Scholar 

  • Zarubin, T., & Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Research, 15, 11–18.

    PubMed  CAS  Google Scholar 

  • Zetser, A., Gredinger, E., & Bengal, E. (1999). p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. Journal of Biological Chemistry, 274, 5193–5200.

    PubMed  CAS  Google Scholar 

  • Zhen, X., Du, W., Romano, A. G., Friedman, E., & Harvey, J. A. (2001). The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. Journal of Neuroscience, 21, 5513–5519.

    PubMed  CAS  Google Scholar 

  • Zorick, T. S., Syroid, D. E., Brown, A., Gridley, T., & Lemke, G. (1999). Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development, 126, 1397–1406.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our work is funded by the Multiple Sclerosis Society of Canada (MSSC), and the Canadian Institutes of Health Research (CIHR). JDH and SH hold studentships from the MSSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermina Almazan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haines, J.D., Fragoso, G., Hossain, S. et al. p38 Mitogen-Activated Protein Kinase Regulates Myelination. J Mol Neurosci 35, 23–33 (2008). https://doi.org/10.1007/s12031-007-9011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9011-0

Keywords

Navigation