Skip to main content
Log in

Minimal In Vitro Antimicrobial Efficacy and Ocular Cell Toxicity from Silver Nanoparticles

  • Published:
NanoBiotechnology

Abstract

Silver in various forms has long been recognized for antimicrobial properties, both in biomedical devices and in eyes. However, soluble drugs used on the ocular surface are rapidly cleared through tear ducts and eventually ingested, resulting in decreased efficacy of the drug on its target tissue and potential concern for systemic side effects. Silver nanoparticles were studied as a source of anti-microbial silver for possible controlled-release contact lens controlled delivery formulations. Silver ion release over a period of several weeks from nanoparticle sources of various sizes and doses was evaluated in vitro against Pseudomonas aeruginosa strain PAO1. Mammalian cell viability and cytokine expression in response to silver nanoparticle exposure is evaluated using corneal epithelial cells and eye-associated macrophages cultured in vitro in serum-free media. Minimal microcidal and cell toxic effects were observed for several silver nanoparticle suspensions and aqueous extraction times for bulk total silver concentrations commensurate with comparative silver ion (e.g., \({\text{Ag}}_{\left( {{\text{aq}}} \right)}^ + \)) toxicity. This indicates that (1) silver particles themselves in these size ranges (20–60 nm diameter) are not microcidal under conditions tested, and (2) insufficient silver ion is generated from these particles at these silver ion-equivalent loadings to produce observable biological effects compared to silver ions in these in vitro assays. This is consistent with confounding literature describing both efficacy and lack of microcidal effects for silver nanoparticles, depending on milieu, surface oxide properties, and size. If dosing allows substantially increased silver particle loading in the lens to produce sufficient pathogen-toxic silver ions and/or particle-microbe direct contact, the bactericidal efficacy of silver nanoparticles in vitro could possibly limit bacterial colonization problems associated with extended-wear contact lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sweeney DF, du Toit R, Keay L, Jalbert I, Sankaridurg PR, Stern J, et al. In: Sweeney DF, editor. Silicone hydrogels: continuous-wear contact lenses. 2nd ed. Oxford: Butterworth-Heinemann; 2004. p. 164–216.

    Google Scholar 

  2. Cheng KH, Leung SL, Hoekman HW, Beekhuis WH, Mulder PG, Geerards AJ, et al. Lancet 1999;354:181–5.

    Article  CAS  Google Scholar 

  3. Willcox MDP, Harmis N, Cowell BA, Williams T, Holden BA. Biomaterials 2001;22:3235–47.

    Article  CAS  Google Scholar 

  4. Rediske AM, Koenig AL, Barekzi N, Ameen LC, Slunt JB, Grainger DW. Biomaterials 2002;23:4565–72.

    Article  CAS  Google Scholar 

  5. Carnoy C, Scharfman A, Van Brussell E, Lamblin G, Ramphal R, Roussel P. Infect Immun 1994;62:1896–900.

    CAS  Google Scholar 

  6. Landa AS, van der Mei HC, van Rij G, Busscher HJ. Cornea 1998;17:293–300.

    Article  CAS  Google Scholar 

  7. Bruinsma GM, van der Mei HC, Busscher HJ. Biomaterials 2001;22:3217–24.

    Article  CAS  Google Scholar 

  8. Lord MS, Stenzel MH, Simmons A, Milthorpe BK. Biomaterials 2006;27:567–75.

    Article  CAS  Google Scholar 

  9. Tian X, Iwatsu M, Sado K, Kanai A. CLAO 2001;27(4):216–20.

    CAS  Google Scholar 

  10. Hehl EM, Beck R, Luthard K, Guthoff R, Drewelow B. Eur J Clin Pharmacol 1999;55(4):317–23.

    Article  CAS  Google Scholar 

  11. Sano K, Tokoro T, Imai Y. Acta Ophthalmol Scand 1996;74(3):243–8.

    Article  CAS  Google Scholar 

  12. Phinney RB, Schwartz SD, Lee DA, Mondino BJ. Arch Ophthalmol 1988;106(11):1599–604.

    CAS  Google Scholar 

  13. Wu P, Grainger DW. Biomaterials 2006;27(11):2450–67.

    Article  CAS  Google Scholar 

  14. Russell AD, Hugo WB. Prog Med Chem 1994;31:351–66.

    CAS  Google Scholar 

  15. Stickler DJ. Curr Opin Infect Dis 2000;13:389–93.

    CAS  Google Scholar 

  16. Williams RL, Doherty PJ, Vince DG, Grashoff GJ, Williams DF. Crit Rev Biocompat 1989;5(3):221–43.

    CAS  Google Scholar 

  17. Bragg PD, Rainnie DJ. Can J Microbiol 1973;20:883–9.

    Article  Google Scholar 

  18. Wataha JC, Hanks CT, Sun Z. Dent Mater 1995;11:239–45.

    Article  CAS  Google Scholar 

  19. Wataha JC, Lockwood PE, Schedle A. J Biomed Mater Res 2000;52:360–4.

    Article  CAS  Google Scholar 

  20. Wataha JC, Lockwood PE, Schedle A, Noda M, Bouillaguet S. J Oral Rehab 2002;29:133–9.

    Article  CAS  Google Scholar 

  21. Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. J Am Med Assoc 1999;281(2):261–7.

    Article  CAS  Google Scholar 

  22. Maki DG, Cobb L, Garman JK, Shapiro JM, Ringer M, Helgerson RB. Am J Med 1988;85(3):307–14.

    Article  CAS  Google Scholar 

  23. Rudolph P, Werner HP, Kramer A. Hyg Med 2000;25:184–6.

    Google Scholar 

  24. Silver S. FEMS Micro Rev 2003;27:341–53.

    Article  CAS  Google Scholar 

  25. Nissen S, Furkert FH. Opthalmologe 2000;97(9):640–3.

    Article  CAS  Google Scholar 

  26. Neely F, Alli A. WO2005/065731 A1 “Anti-microbial contact lenses and methods for their production.” 2005.

  27. Meyers AW, Neely FL, Enns JB. US2004/0115242 A1 “Anti-microbial contact lenses and methods for their production.” 2004.

  28. Willcox M, Williams T, Schneider R, Vanderlaan D. US6591814 B2 “Biomedical devices with anti-microbial coatings.” 2003.

  29. Vanderlaan DG, Meyers A, Brown-Skrobot S. WO 02/062402 A1 “Anti-microbial contact lenses containing activated silver and methods for their production.” 2002.

  30. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Langmuir 2002;18:6679–86.

    Article  CAS  Google Scholar 

  31. Hamouda T, Hayes M, Cao Z, Tonda R, Johnson K, Craig W, et al. J Infect Dis 1999;180:1939–49.

    Article  CAS  Google Scholar 

  32. Godek ML, Malkov GS, Fisher ER, Grainger DW. Plasma Proc Polym 2006;3:485–97.

    Article  CAS  Google Scholar 

  33. Crouch S, Kozlowski R, Slater K, Fletcher J. J Immunol Meth 1993;160(1):81–8.

    Article  CAS  Google Scholar 

  34. Olsson T, Gulliksson H, Palmeborn M, Bergstrom K, Thore A. J Appl Biochem 1983;5:347–445.

    Google Scholar 

  35. Squirrell D, Murphy J. In: Stanley Smither PER, Simpson WJ, editors. A practical guide to industrial uses of ATP luminescence in rapid microbiology. Lindfield: Cara Technology Ltd; 1997, p. 107–13.

    Google Scholar 

  36. Lin S-Y, Tsai Y-T, Chen C-C, Lin C-M, Chen C-H. J Phys Chem B 2004;108:2134–9.

    Article  CAS  Google Scholar 

  37. Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, et al. J Biol Inorg Chem 2007;12:527–34.

    Article  CAS  Google Scholar 

  38. Morones JR, Elechiguerra JL, Cammacho A, Holt K, Kouri JB, Ramirez JT, et al. Nanotechnol 2005;16:2346–53.

    Article  CAS  Google Scholar 

  39. Szliter EA, Barrett RP, Gabriel MM, Zhang Y, Hazlett LD. Eye Contact Lens 2006;32(1):12–8.

    Article  CAS  Google Scholar 

  40. Huang X, Barrett RP, McClellan SA, Hazlett LD. Invest Ophthalmol Vis Sci 2005;46(11):4209–16.

    Article  Google Scholar 

  41. Hazlett LD. Prog Ret Eye Res 2004;23:1–30.

    Article  CAS  Google Scholar 

  42. Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA. Proc Natl Acad Sci U S A 1989;86:3803–7.

    Article  CAS  Google Scholar 

  43. Takano Y, Fukagawa K, Shimmura S, Tsubota K, Oguchi Y, Saito H. Br J Opthamol 1999;83:1074–6.

    CAS  Google Scholar 

  44. Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K. Ann Rev Immunol 1991;19:617–48.

    Google Scholar 

  45. Thakur A, Willcox MDP. Exp Eye Res 2000;70:255–9.

    Article  CAS  Google Scholar 

  46. Xue ML, Willcox MDP, Lloyd A, Wakefield D, Thakur A. Clin Exp Opthamol 2001;29:171–4.

    Article  CAS  Google Scholar 

  47. Laskin DL, Pendino KJ. Annu Rev Pharmacol Toxicol 1995;35:655–77.

    Article  CAS  Google Scholar 

  48. Rudner XL, Kernacki KA, Barrett RP, Hazlett LD. J Opthamol 2000;164:6576–82.

    CAS  Google Scholar 

  49. Thakur A, Xue M, Stapleton F, Lloyd AR, Wakefield D, Willcox MDP. Infect Immun 2002;70(4):2187–97.

    Article  CAS  Google Scholar 

  50. Thakur A, Kyd J, Xue M, Willcox MDP, Cripps A. Infect Immun 2001;69(5):3295–304.

    Article  CAS  Google Scholar 

  51. Ishii H, Hayashi S, Hogg JC, Fujii T, Goto Y, Sakamoto N, et al. Respir Res 2005;6(1):87.

    Article  CAS  Google Scholar 

  52. Matthews JB, Green TR, Stone MH, Wroblewski BM, Fisher J, Ingham E. J Mater Sci Mater Med 2001;12(3):249–58.

    Article  CAS  Google Scholar 

  53. Balduzzi M, Diociaiuti M, De Berardis B, Paradisi S, Paoletti L. Environ Res 2004;96(1):62–71.

    Article  CAS  Google Scholar 

  54. Dinarello CA, Wolff SM. N Engl J Med 1993;328:106–13.

    Article  CAS  Google Scholar 

  55. Niederkorn JY, Peeler JS, Mellon J. Reg Immunol 1989;2:83–90.

    CAS  Google Scholar 

  56. Chusid MJ, Davis SD. Infect Immun 1979;24:948–52.

    CAS  Google Scholar 

  57. Grainger DW, Castner DG. Adv Mater. 2008, in press DOI 10.1002/adma.200701760 February.

  58. Pan Y, Neuss S, Leifert A, Fischler M, Wen S, Simon U, et al. Small 2007;29:1941–9.

    Article  CAS  Google Scholar 

  59. Florence AT. Int J Pharm 2007;339:1–2.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for graduate student support, technical assistance, and the gift of human corneal epithelial cells from Ciba-Vision Novartis (Norcross, GA, USA), as well as the gift of P. aeruginosa strain PAO1 from H. Schweitzer (Colorado State University). Technical advice from Dr. M. Gabriel and A. Wright (CibaVision Novartis), and Dr. R. J. Christie, Dr. M. L. Godek, Dr. P. Wu, L. Chamberlain, and P. Hogrebe (Colorado State University) is very much appreciated. Partial support from NIH grant EB000894 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Grainger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santoro, C.M., Duchsherer, N.L. & Grainger, D.W. Minimal In Vitro Antimicrobial Efficacy and Ocular Cell Toxicity from Silver Nanoparticles. Nanobiotechnol 3, 55–65 (2007). https://doi.org/10.1007/s12030-008-9007-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12030-008-9007-z

Keywords

Navigation