Skip to main content

Advertisement

Log in

Evaluation of ATAD2 as a Potential Target in Hepatocellular Carcinoma

  • Invited Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Purpose

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with lack of effective systemic chemotherapy. In this study, we aimed to evaluate the value of ATPase family AAA domain-containing protein 2 (ATAD2) as a biomarker and potential therapeutic target for HCC.

Methods

The expression of ATAD2 was tested in different HCC patient cohorts by immunohistochemistry and comparative transcriptional analysis. The co-expression of ATAD2 and proliferation markers was compared during liver regeneration and malignancy with different bioinformatics tools. The cellular effects of ATAD2 inactivation in liver malignancy was tested on cell cycle, apoptosis, and colony formation ability as well as tumor formation using RNA interference. The genes affected by ATAD2 inactivation in three different HCC cell lines were identified by global gene expression profiling and bioinformatics tools.

Results

ATAD2 overexpression is closely correlated with HCC tumor stage. There was gradual increase from dysplasia, well-differentiated and poorly-differentiated HCC, respectively. We also observed transient upregulation of ATAD2 expression during rat liver regeneration in parallel to changes in Ki-67 expression. ATAD2 knockdown resulted in apoptosis and decreased cell survival in vitro and decreased tumor formation in some HCC cell lines. However, three other HCC cell lines tested were not affected. Similarly, gene expression response to ATAD2 inactivation in different HCC cell lines was highly heterogeneous.

Conclusions

ATAD2 is a potential proliferation marker for liver regeneration and HCC. It may also serve as a therapeutic target despite heterogeneous response of malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The contributions for the study are included in the article/Online Resources. Raw microarray data that support the findings of this study and further information are available upon request from corresponding author.

References

  1. Cattaneo M, Morozumi Y, Perazza D, Boussouar F, Jamshidikia M, Rousseaux S, Verdel A, Khochbin S. Lessons from yeast on emerging roles of the ATAD2 protein family in gene regulation and genome organization. Mol Cells. 2014;37:851–6. https://doi.org/10.14348/molcells.2014.0258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morozumi Y, Boussouar F, Tan M, Chaikuad A, Jamshidikia M, Colak G, He H, Nie L, Petosa C, De Dieuleveult M, et al. ATAD2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J Mol Cell Biol. 2016;8:349–62. https://doi.org/10.1093/jmcb/mjv060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koo SJ, Fernández-Montalván AE, Badock V, Ott CJ, Holton SJ, von Ahsen O, Toedling J, Vittori S, Bradner JE, Gorjánácz M. ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication. Oncotarget. 2016;7:70323–35. https://doi.org/10.18632/oncotarget.11855.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cho C, Jang J, Kang Y, Watanabe H, Uchihashi T, Kim SJ, Kato K, Lee JY, Song JJ. Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Nat Commun. 2019;10:1–13. https://doi.org/10.1038/s41467-019-13743-9.

    Article  CAS  Google Scholar 

  5. Shahnejat-Bushehri S, Ehrenhofer-Murray AE. The ATAD2/ANCCA homolog Yta7 cooperates with Scm3HJURP to deposit Cse4CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A. 2020;117:5386–93. https://doi.org/10.1073/pnas.1917814117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zou JX, Revenko AS, Li LB, Gemo AT, Chen HW. ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERα, is required for coregulator occupancy and chromatin modification. Proc Natl Acad Sci U S A. 2007;104:18067–72. https://doi.org/10.1073/pnas.0705814104.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ciró M, Prosperini E, Quarto M, Grazini U, Walfridsson J, McBlane F, Nucifero P, Pacchiana G, Capra M, Christensen J, et al. ATAD2 is a novel cofactor for MYC, overexpressed and amplified in aggressive tumors. Cancer Res. 2009;69:8491–8. https://doi.org/10.1158/0008-5472.CAN-09-2131.

    Article  CAS  PubMed  Google Scholar 

  8. Caron C, Lestrat C, Marsal S, Escoffier E, Curtet S, Virolle V, Barbry P, Debernardi A, Brambilla C, Brambilla E, et al. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene. 2010;29:5171–81. https://doi.org/10.1038/onc.2010.259.

    Article  CAS  PubMed  Google Scholar 

  9. Yildiz G, Arslan-Ergul A, Bagislar S, Konu O, Yuzugullu H, Gursoy-Yuzugullu O, Ozturk N, Ozen C, Ozdag H, Erdal E, Karademir S, et al. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0064016.

  10. Hussain M, Zhou Y, Song Y, Hameed HMA, Jiang H, Tu Y, Zhang J. ATAD2 in cancer: a pharmacologically challenging but tractable target. Expert Opin Ther Targets. 2018;22:85–96. https://doi.org/10.1080/14728222.2018.1406921.

    Article  CAS  PubMed  Google Scholar 

  11. Yuzugullu H, Benhaj K, Ozturk N, Senturk S, Celik E, Toylu A, Tasdemir N, Yilmaz M, Erdal E, Akcali KC, et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 2009;8:90. https://doi.org/10.1186/1476-4598-8-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torbenson MS, Ng IOL, Park YN, Roncalli M, Sakamoto M. Hepatocellular carcinoma. In: WHO Classification of Tumors Editorial Board. Digestive system tumours. WHO classification of tumours series. 5th ed. Lyon: Int Agen Res Cancer. 2019:229–39.

  13. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8. https://doi.org/10.1038/s41587-020-0546-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20:307–15. https://doi.org/10.1093/bioinformatics/btg405.

    Article  CAS  PubMed  Google Scholar 

  15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.

    Article  CAS  Google Scholar 

  17. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10. https://doi.org/10.1093/nar/30.1.207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brewer JW, Hendershot LM, Sherr CJ, Diehl JA. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression. Proc Natl Acad Sci U S A. 1999;96:8505–10. https://doi.org/10.1073/pnas.96.15.8505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Banerjee A, Lang JY, Hung MC, Sengupta K, Banerjee SK, Baksi K, Banerjee DK. Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin. J Biol Chem. 2011;286:29127–38. https://doi.org/10.1074/jbc.M110.169771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang J, Huang J, Luo L, Chen Z, Guo Y, Guo L. Significance of PRO2000/ANCCA expression, a novel proliferation-associated protein in hepatocellular carcinoma. Cancer Cell Int. 2014;14:1–7. https://doi.org/10.1186/1475-2867-14-33.

    Article  CAS  Google Scholar 

  21. Huang J, Yang J, Lei Y, Gao H, Wei T, Luo L, Zhang F, Chen H, Zeng Q, Guo L. An ANCCA/PRO2000-miR-520a-E2F2 regulatory loop as a driving force for the development of hepatocellular carcinoma. Oncogenesis. 2016;5:e229. https://doi.org/10.1038/oncsis.2016.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hwang HW, Ha SY, Bang H, Park CK. ATAD2 as a poor prognostic marker for hepatocellular carcinoma after curative resection. Cancer Res Treat. 2015;47:853–61. https://doi.org/10.4143/crt.2014.177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaita KDE, Pettigrew N, Minuk GY. Hepatic regeneration in humans with various liver disease as assessed by Ki-67 staining of formalin-fixed paraffin-embedded liver tissue. Liver. 1997;17:13–6. https://doi.org/10.1111/j.1600-0676.1997.tb00772.x.

    Article  CAS  PubMed  Google Scholar 

  24. Gerlach C, Sakkab DY, Scholzen T, Daßler R, Alison MR, Gerdes J. Ki-67 expression during rat liver regeneration after partial hepatectomy. Hepatology. 1997;26:573–8. https://doi.org/10.1053/jhep.1997.v26.pm0009303485.

    Article  CAS  PubMed  Google Scholar 

  25. Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31:13–20. https://doi.org/10.1002/ijc.2910310104.

    Article  CAS  PubMed  Google Scholar 

  26. Cuylen S, Blaukopf C, Politi AZ, Muller-Reichert T, Neumann B, Poser I, Ellenberg J, Hyman AA, Gerlich DW. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. 2016;535:308–12. https://doi.org/10.1038/nature18610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bassik MC, Kampmann M. Knocking out the door to tunicamycin entry. Proc Natl Acad Sci U S A. 2011;108:11731–2. https://doi.org/10.1073/pnas.1109035108.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lai S-S, Zhao D-D, Cao P, Lu K, Luo O-Y, Chen W-B, Liu J, Jiang E-Z, Yu Z-H, Lee G, et al. PP2Acα positively regulates the termination of liver regeneration in mice through the AKT/GSK3β/Cyclin D1 pathway. J Hepatol. 2016;64:352–60. https://doi.org/10.1016/j.jhep.2015.09.025.

    Article  CAS  PubMed  Google Scholar 

  29. Oki T, Nishimura K, Kitaura J, Togami K, Maehara A, Izawa K, Sakaue-Sawano A, Niida A, Miyano S, Aburatani H, Kiyonari H, et al. A novel cell-cycle-indicator, mVenus-p27K -, identifies quiescent cells and visualizes G0-G1 transition. Sci Rep. 2014;4. https://doi.org/10.1038/srep04012.

  30. Sreekumar R, Emaduddin M, Al-Saihati H, Moutasim K, Chan J, Spampinato M, Bhome R, Yuen HM, Mescoli C, Vitale A, Cillo U, et al. Protein kinase C inhibitors override ZEB1-induced chemoresistance in HCC. Cell Death Dis. 2019;10. https://doi.org/10.1038/s41419-019-1885-6.

  31. Sayan AE, Sayan BS, Findikli N, Ozturk M. Acquired expression of transcriptionally active p73 in hepatocellular carcinoma cells. Oncogene. 2001;20:5111–7. https://doi.org/10.1038/sj.onc.1204669.

    Article  CAS  PubMed  Google Scholar 

  32. Lu WJ, Chua MS, So SK. Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53-and p38-mediated apoptotic signaling. Oncotarget. 2015;6:41722–35. https://doi.org/10.18632/oncotarget.6152.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu G, Liu H, He H, Wang Y, Lu X, Yu Y, Xia S, Meng X, Liu Y. MiR-372 down-regulates the oncogene ATAD2 to influence hepatocellular carcinoma proliferation and metastasis. BMC Cancer. 2014;14:1–11. https://doi.org/10.1186/1471-2407-14-107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was part of PhD theses of H.Y. (Bilkent University, Ankara, Turkey). We would like to thank Izmir Biomedicine and Genome Center’s core facilities especially Optical Imaging and IBG Bioinformatics Platform (IBG-BIP) for their support during data collection and analysis.

Funding

This study was supported by the funds from TUBITAK (109S191, 111T558), Turkish Academy of Sciences, Dokuz Eylul University, and İzmir Biomedicine and Genome Center.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MO; experiments: UE, HY, CO, OY, PK, and EB. Bioinformatics and statistical analyses: GK, HU, and UE; evaluation of the data: MO, NA, HA, FY, and PBK; drafting of the manuscript: MO and UE. All authors were involved in finalization of the manuscript and approved the submitted version.

Corresponding author

Correspondence to Mehmet Ozturk.

Ethics declarations

Ethics Approval

Study with clinical samples was approved by Ege University Ethics Committee. Animal experiments were approved by Bilkent University Animal Ethics Committee. (Decision No: 2006/1; Decision date: 10/5/2006).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekin, U., Yuzugullu, H., Ozen, C. et al. Evaluation of ATAD2 as a Potential Target in Hepatocellular Carcinoma. J Gastrointest Canc 52, 1356–1369 (2021). https://doi.org/10.1007/s12029-021-00732-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-021-00732-9

Keywords

Navigation