Skip to main content

Advertisement

Log in

Inter-Subject Correlation Exists Between Morphological Metrics of Cerebral Blood Flow Velocity and Intracranial Pressure Pulses

  • Original Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

The prototypical intracranial pressure (ICP) pulse morphology has been well known to be triphasic. Several studies suggest that the morphology of ICP pulse reflects the physiological and pathophysiological conditions of the intracranial dynamics. Recently, there has been a renaissance of studying ICP pulse using new ICP signal processing technologies in various clinical contexts. Cerebral blood flow velocity (CBFV) pulse is another important pulsatile signal originated from the complex circulatory systems of cerebral blood flow. However, CBFV pulse morphology has not been well studied mainly due to the noise level and lack of signal processing techniques.

Methods

Our group recently developed a technique called the morphological clustering and analysis of intracranial pressure that can extract a comprehensive set of pulse morphological metrics. We extend this algorithm to extract various morphological metrics from ICP and CBFV pulses that were simultaneously recorded from 47 brain injury patients and investigate the mutual correlation between those metrics utilizing the robust percentage bend correlation analysis.

Results

Our results show that CBFV pulses are also triphasic as ICP pulses and 15.2% of 128 pulse morphological metrics extracted from ICP and CBFV pulses are highly correlated (P < 0.01) in an inter-subject fashion. In addition, mean ICP does not correlate (P = 0.45) with the pulsatility index of CBFV pulses but correlates (P < 0.05) with several novel CBFV pulse morphological metrics such as the time interval between the onset of CBFV pulses and ECG QRS peak.

Conclusions

Our results suggest that characterizing CBFV pulse morphology is clinically important because it may offer a potential noninvasive alternative to assess various aspects of ICP such as mean ICP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Piper IR, Chan KH, Whittle IR, Miller JD. An experimental study of cerebrovascular resistance, pressure transmission, and craniospinal compliance. Neurosurgery. 1993;32(5):805–15; discussion 815–6.

    Article  PubMed  CAS  Google Scholar 

  2. Piper IR, Miller JD, Dearden NM, Leggate JR, Robertson I. Systems analysis of cerebrovascular pressure transmission: an observational study in head-injured patients. J Neurosurg. 1990;73(6):871–80. http://dx.doi.org/10.3171/jns.1990.73.6.0871.

    Google Scholar 

  3. Portnoy HD, Chopp M. Cerebrospinal fluid pulse wave form analysis during hypercapnia and hypoxia. Neurosurgery. 1981;9(1):14–27.

    Article  PubMed  CAS  Google Scholar 

  4. Hirai O, Handa H, Ishikawa M. Intracranial pressure pulse waveform: considerations about its origin and methods of estimating intracranial pressure dynamics. No To Shinkei. 1982;34(11):1059–65.

    PubMed  CAS  Google Scholar 

  5. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD. Intracranial hypertension: what additional information can be derived from icp waveform after head injury? Acta Neurochir (Wien). 2004;146(2):131–41. http://dx.doi.org/10.1007/s00701-003-0187-y.

  6. Kirkness CJ, Mitchell PH, Burr RL, March KS, Newell DW. Intracranial pressure waveform analysis: clinical and research implications. J Neurosci Nurs. 2000;32(5):271–77.

    Article  PubMed  CAS  Google Scholar 

  7. Contant CF, Robertson CS, Crouch J, Gopinath SP, Narayan RK, Grossman RG. Intracranial pressure waveform indices in transient and refractory intracranial hypertension. J Neurosci Methods. 1995;57(1):15–25.

    Article  PubMed  Google Scholar 

  8. Matsumoto T, Nagai H, Kasuga Y, Kamiya K. Changes in intracranial pressure (icp) pulse wave following hydrocephalus. Acta Neurochir (Wien). 1986;82(1–2):50–6.

    Article  CAS  Google Scholar 

  9. Eide PK. A new method for processing of continuous intracranial pressure signals. Med Eng Phys. 2006;28(6):579–87. http://dx.doi.org/10.1016/j.medengphy.2005.09.008.

    Google Scholar 

  10. Eide P, Brean A. Cerebrospinal fluid pulse pressure amplitude during lumbar infusion in idiopathic normal pressure hydrocephalus can predict response to shunting. Cerebrospinal Fluid Res. 2010;7:5 .

    Google Scholar 

  11. Eide P, Sorteberg W. Changes in intracranial pulse pressure amplitudes after shunt implantation and adjustment of shunt valve opening pressure in normal pressure hydrocephalus. Acta Neurochir. 2008;150(11):1141–47.

    Article  Google Scholar 

  12. Fan J-Y, Kirkness C, Vicini P, Burr R, Mitchell P. An approach to determining intracranial pressure variability capable of predicting decreased intracranial adaptive capacity in patients with traumatic brain injury. Biol Res Nurs. 2010;11(4):317–24.

    Article  PubMed  Google Scholar 

  13. Fan J-Y, Kirkness C, Vicini P, Burr R, Mitchell P. Intracranial pressure waveform morphology and intracranial adaptive capacity. Am J Crit Care. 2010;17:545–54.

    PubMed  Google Scholar 

  14. Hu X, Xu P, Scalzo F, Vespa P, Bergsneider M. Morphological clustering and analysis of continuous intracranial pressure. IEEE Trans Biomed Eng. 2009;56(3):696–705. http://dx.doi.org/10.1109/TBME.2008.2008636.

    Google Scholar 

  15. Asgari S, Xu P, Bergsneider M, Hu X. A subspace decomposition approach toward recognizing valid pulsatile signals. Phys Meas. 2009;30:1211–25.

    Article  Google Scholar 

  16. Scalzo F, Xu P, Bergsneider M, Hu X. Nonlinear regression for sub-peak detection of intracranial pressure signals. In: 30th Annual International IEEE EMBS Conference, Vancouver; 2008. p. 5411–14.

  17. Hu X, Xu P, Lee DJ, Paul V, Bergsneider M. Morphological changes of intracranial pressure pulses are correlated with acute dilatation of ventricles. Acta Neurochir Suppl. 2008;102:131–6.

    Article  PubMed  Google Scholar 

  18. Hu X, Xu P, Asgari S, Vespa P, Bergsneider M. Forecasting icp elevation based on prescient changes of intracranial pressure waveform morphology. IEEE Trans Biomed Eng. 2010;57(5):1070–78.

    Article  PubMed  Google Scholar 

  19. Kasprowicz M, Asgari S, Bergsneider M, Czosnyka M, Hamilton R, Hu X. Pattern recognition of overnight intracranial pressure slow waves using morphological features of intracranial pressure pulse. J Neurosci Methods. 2010;190(2):310–18.

    Article  PubMed  Google Scholar 

  20. Hu X, Glenn T, Scalzo F, Bergsneider M, Sarkiss C, Martin N, Vespa P. Intracranial pressure pulse morphological features improved detection of decreased cerebral blood flow. Phys Meas. 2010;31(5):679–95.

    Article  Google Scholar 

  21. Hu X, Hamilton R, Vespa P, Glenn T, Martin N, Bergsneider M. Inter-subject correlation between morphological metrics of cerebral blood flow velocity pulse and intracranial pressure pulse exists. In: 14th International conference on intracranial pressure and brain monitoring, Tübingen; 2010, p. 12–16.

  22. Lee S-C, Chen J-F, Lee S-T. Continuous regional cerebral blood flow monitoring in the neurosurgical intensive care unit. J Clin Neurosci. 2005;12(5):520–3.

    Article  Google Scholar 

  23. Sioutos P, Orozco J, Carter L, Weinand M, Hamilton A, Williams F. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995;36(5):943–50.

    Article  PubMed  CAS  Google Scholar 

  24. Martin N, Doberstein C, Zane C, Carbon M, Thomas K, Becker D. Posttraumatic cerebral arterial spasm: transcranial doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg. 1992;77:575–83.

    Article  PubMed  CAS  Google Scholar 

  25. Hunter G, Voll C, Rajput M. Utility of transcranial doppler in idiopathic intracranial hypertension. Can J Neurol Sci. 2010;37(2):235–9.

    PubMed  Google Scholar 

  26. Bellner J, Romner B, Reinstrup P, Kristiansson K-A, Ryding E, Brandt L. Transcranial doppler sonography pulsatility index (pi) reflects intracranial pressure (icp). Surg Neurol. 2004;62(1):45–51; discussion 51. http://dx.doi.org/10.1016/j.surneu.2003.12.007.

  27. Schmidt B, Czosnyka M, Raabe A, Yahya H, Schwarze JJ, Sackerer D, Sander D, Klingelhfer J. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke. 2003;34(1):84–9.

    Article  PubMed  Google Scholar 

  28. Schmidt B, Czosnyka M, Schwarze J, Sander D, Gerstner W, Lumenta C, Klingelhofer J. Evaluation of a method for noninvasive intracranial pressure assessment during infusion studies in patients with hydrocephalus. J Neurosurg. 2000;92(5):793–800.

    Article  PubMed  CAS  Google Scholar 

  29. Belfort MA, Tooke-Miller C, Varner M, Saade G, Grunewald C, Nisell H, Herd JA. Evaluation of a noninvasive transcranial doppler and blood pressure-based method for the assessment of cerebral perfusion pressure in pregnant women. Hypertens Pregnancy. 2000;19(3):331–40.

    Article  PubMed  CAS  Google Scholar 

  30. Vakalos A, Matamis D, Rodini I, Rigos D. Correlation of transcranial doppler (tcd) parameters with intracranial pressure (icp). In: 19th International symposium on intensive care and emergency medicine, vol 3(Suppl 1), Brussels;1999. p. 218.

  31. Ueno T, Ballard RE, Shuer LM, Cantrell JH, Yost WT, Hargens AR. Noninvasive measurement of pulsatile intracranial pressure using ultrasound. Acta Neurochir Suppl. 1998;71:66–9.

    PubMed  CAS  Google Scholar 

  32. Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial doppler ultrasonography. J Neurosurg. 1998;88(5):802–8. http://dx.doi.org/10.3171/jns.1998.88.5.0802.

    Google Scholar 

  33. Nagai H, Moritake K, Takaya M. Correlation between transcranial doppler ultrasonography and regional cerebral blood flow in experimental intracranial hypertension. Stroke. 1997;28(3):603–7; discussion 608.

    PubMed  CAS  Google Scholar 

  34. Ekelund A, SSveland H, Romner B, Brandt L. Transcranial doppler ultrasound in hypertensive versus normotensive patients after aneurysmal subarachnoid hemorrhage. Stroke. 1995;26(11):2071–4.

    PubMed  CAS  Google Scholar 

  35. Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen L-O. Transcranial doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66(6):1050–7. http://dx.doi.org/10.1227/01.NEU.0000369519.35932.F2.

  36. Wilcox RR. Introduction to robust estimation and hypothesis testing, 2nd ed. New York: Elsevier; 2005.

    Google Scholar 

  37. Wilcox RR. The percentage bend correlation coefficient. Psychometrika. 1994;59(4):601–16.

    Article  Google Scholar 

  38. R Development Core Team, “R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna. 2006. http://www.R-project.org.

  39. Wilcox R, Schoenbrodt F. WRS: A compiled package of R.R. Wilcox’ robust statistics functions. R package version 0.11/r8. 2009. http://R-Forge.R-project.org/projects/wrs.

  40. Aggarwal S, Brooks D, Kang Y, Linden PK, Patzer JF II. Noninvasive monitoring of cerebral perfusion pressure in patients with acute liver failure using transcranial doppler ultrasonography. Liver Transplant. 2008;14:1048–57.

    Google Scholar 

  41. Hu X, Nenov V, Bergsneider M, Martin N. A data mining framework of noninvasive intracranial pressure assessment. Biomed Signal Process Control. 2006;1:64–77.

    Article  Google Scholar 

  42. Schmidt B, Bocklisch S, Päßler M, Czosnyka M, Schwarze J, Klingelhöfer J. Fuzzy pattern classification of hemodynamic data can be used to determine noninvasive intracranial pressure. Acta Neurochir Suppl. 2005;95:345–9.

    Article  PubMed  CAS  Google Scholar 

  43. Schmidt B, Czosnyka M, Schwarze J, Sander D, Gerstner W, Lumenta C, Pickard J, Klingelhfer J. Cerebral vasodilatation causing acute intracranial hypertension: a method for noninvasive assessment. J Cerebral Blood Flow Metab. 1999;19(9):990–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The present work is partially supported by NINDS research grant awards NS059797, NS054881 and NS066008. We would also like to thank technicians of the UCLA Cerebral Blood Flow Laboratory for helping data acquisition. The authors would also like to thank reviewers for their constructive comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Hu, X., McArthur, D. et al. Inter-Subject Correlation Exists Between Morphological Metrics of Cerebral Blood Flow Velocity and Intracranial Pressure Pulses. Neurocrit Care 14, 229–237 (2011). https://doi.org/10.1007/s12028-010-9471-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-010-9471-x

Keywords

Navigation