Skip to main content

Advertisement

Log in

Immune reconstitution therapy (IRT) in multiple sclerosis: the rationale

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Immunotherapy of multiple sclerosis (MS) and other neuroimmune diseases is rapidly evolving. For the past 25 years, there has been an accelerating inclusion of new immunomodulating drugs. Based on their molecular construction and their basic mechanism of action, immunotherapeutic agents belong to the following categories: (1) cytotoxic drugs, (2) synthetic immunomodulators, (3) monoclonal antibodies, (4) vaccines (T cell vaccines, antigen vaccines), (5) oral tolerizing agents, (6) modalities that act as indirect immunosuppressants (plasmapheresis, intravenous immunoglobulins [IVIG]), and (7) cellular therapies. MS immunotherapies may also be classified in a different way, into treatments that are given continuously (chronic treatments) and medications that are applied intermittently (IRTs). The principle behind the latter is depletion of the immune system that allows it to rebuild itself. Upon its reconstitution/resetting, the immune system regains the ability to respond to infections and survey the periphery for cancer. An IRT by definition is given at short intermittent courses and not continuously. IRT modalities were shown to induce long-term remission of MS that, in some cases, is close to the definition of a “cure.” There are cohorts of patients having been treated with the IRTs, alemtuzumab, and HSCT, who experience—under these modalities—no evidence of disease activity (NEDA) for over 10 years. Most importantly, IRTs cause radical changes in the lymphocyte repertoire after the reconstitution phase that may explain the long-term beneficial effects of IRT and the possibility of re-induction of self-tolerance to self/myelin antigens. In comparison, a chronic treatment cannot result in cure of the autoimmune reactivity, because it only blocks the immune system, as long as it is given; it cannot therefore radically affect the immunopathogenesis of the disease. The risks of adverse events related to immune suppression (such as opportunistic infections and secondary malignancies) with IRTs are lower and front-loaded, whereas the common side effects of chronic immunomodulation are higher and accumulate with time. In conclusion, IRT provides a novel concept for MS therapy with substantial advantages over chronic immunosuppression. IRT therapies have shown a significantly higher level of efficacy in MS. The “Holy grail” of the treatment of autoimmunity, which is to re-induce the disrupted self-tolerance, seems to be achievable—at least in part—with this approach. Moreover, the benefits of IRT, administered in short pulses, include significantly higher adherence to treatment and lower risks for accumulative side effects that are typically associated with chronic immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994;179:973–84.

    Article  CAS  PubMed  Google Scholar 

  2. Allegretta M, Nicklas JA, Sriram S, Albertini RJ. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science. 1990;247:718–21.

    Article  CAS  PubMed  Google Scholar 

  3. Bar-Or A. Multiple sclerosis and related disorders: evolving pathophysiologic insights. Lancet Neurol. 2016;15:9–11.

    Article  PubMed  Google Scholar 

  4. Wucherpfennig KW, Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995;80:695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Venken K, Hellings N, Hensen K, Rummens JL, Stinissen P. Memory CD4+CD127high T cells from patients with multiple sclerosis produce IL-17 in response to myelin antigens. J Neuroimmunol. 2010;226:185–91.

    Article  CAS  PubMed  Google Scholar 

  6. Danikowski KM, Jayaraman S, Prabhakar BS. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tesmer LA, Lundy SK, Sarkar S, Fox DA. Th17 cells in human disease. Immunol Rev. 2008;223:87–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  9. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13:1173–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vanderlugt CJ, Miller SD. Epitope spreading. Curr Opin Immunol. 1996;8:831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002;2:85–95.

    Article  CAS  PubMed  Google Scholar 

  12. Quintana FJ, Patel B, Yeste A, Nyirenda M, Kenison J, Rahbari R, et al. Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. Neurology. 2014;83:2219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hawker K. B-cell-targeted treatment for multiple sclerosis: mechanism of action and clinical data. Curr Opin Neurol. 2008;21(Suppl 1):S19–25.

    Article  CAS  PubMed  Google Scholar 

  14. Zouali M. B lymphocytes--chief players and therapeutic targets in autoimmune diseases. Front Biosci. 2008;13:4852–61.

    Article  CAS  PubMed  Google Scholar 

  15. Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol. 2010;67:452–61.

    Article  CAS  PubMed  Google Scholar 

  16. Cepok S, Rosche B, Grummel V, Vogel F, Zhou D, Sayn J, et al. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain. 2005;128:1667–76.

    Article  PubMed  Google Scholar 

  17. Owens GP, Bennett JL, Gilden DH, Burgoon MP. The B cell response in multiple sclerosis. Neurol Res. 2006;28:236–44.

    Article  CAS  PubMed  Google Scholar 

  18. Prineas JW, Graham JS. Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol. 1981;10:149–58.

    Article  CAS  PubMed  Google Scholar 

  19. Archelos JJ, Storch MK, Hartung HP. The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol. 2000;47:694–706.

    Article  CAS  PubMed  Google Scholar 

  20. Serafini B, Rosicarelli B, Magliozzi R, Stigliano E, Aloisi F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 2004;14:164–74.

    Article  PubMed  Google Scholar 

  21. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006;129:200–11.

    Article  PubMed  Google Scholar 

  22. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.

    Article  PubMed  Google Scholar 

  23. Ruggieri S, Petracca M, Miller A, Krieger S, Ghassemi R, Bencosme Y, et al. Association of deep gray matter damage with cortical and spinal cord degeneration in primary progressive multiple sclerosis. JAMA Neurol. 2015;72(12):1466–74.

    Article  PubMed  Google Scholar 

  24. Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85:1386–95.

    Article  PubMed  Google Scholar 

  25. Cappellani R, Bergsland N, Weinstock-Guttman B, Kennedy C, Carl E, Ramasamy DP, et al. Subcortical deep gray matter pathology in patients with multiple sclerosis is associated with white matter lesion burden and atrophy but not with cortical atrophy: a diffusion tensor MRI study. AJNR Am J Neuroradiol. 2014;35:912–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daams M, Geurts JJ, Barkhof F. Cortical imaging in multiple sclerosis: recent findings and “grand challenges”. Curr Opin Neurol. 2013;26:345–52.

    Article  PubMed  Google Scholar 

  27. Calabrese M, Rinaldi F, Mattisi I, Bernardi V, Favaretto A, Perini P, et al. The predictive value of gray matter atrophy in clinically isolated syndromes. Neurology. 2011;77:257–63.

    Article  CAS  PubMed  Google Scholar 

  28. Ceccarelli A, Rocca MA, Neema M, Martinelli V, Arora A, Tauhid S, et al. Deep gray matter T2 hypointensity is present in patients with clinically isolated syndromes suggestive of multiple sclerosis. Mult Scler. 2010;16:39–44.

    Article  PubMed  Google Scholar 

  29. Neema M, Arora A, Healy BC, Guss ZD, Brass SD, Duan Y, et al. Deep gray matter involvement on brain MRI scans is associated with clinical progression in multiple sclerosis. J Neuroimaging. 2009;19:3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Geurts JJ, Bo L, Pouwels PJ, Castelijns JA, Polman CH, Barkhof F. Cortical lesions in multiple sclerosis: combined postmortem MR imaging and histopathology. AJNR Am J Neuroradiol. 2005;26:572–7.

    PubMed  PubMed Central  Google Scholar 

  31. Popescu BF, Lucchinetti CF. Meningeal and cortical grey matter pathology in multiple sclerosis. BMC Neurol. 2012;12:11.

    Article  PubMed  Google Scholar 

  32. Popescu BF, Pirko I, Lucchinetti CF. Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn). 2013;19:901–21.

    Google Scholar 

  33. Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365:2188–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kutzelnigg A, Lassmann H. Cortical demyelination in multiple sclerosis: a substrate for cognitive deficits? J Neurol Sci. 2006;245:123–6.

    Article  PubMed  Google Scholar 

  35. Romme Christensen J, Bornsen L, Ratzer R, Piehl F, Khademi M, Olsson T, et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One. 2013;8:e57820.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–36.

    Article  PubMed  Google Scholar 

  37. Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018;378:169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Karussis D. Immunotherapy of multiple sclerosis: the state of the art. BioDrugs. 2013;27:113–48.

    Article  CAS  PubMed  Google Scholar 

  40. Tuohy O, Costelloe L, Hill-Cawthorne G, Bjornson I, Harding K, Robertson N, et al. Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. J Neurol Neurosurg Psychiatry. 2015;86:208–15.

    Article  PubMed  Google Scholar 

  41. Massey JC, Sutton IJ, Ma DDF, Moore JJ. Regenerating immunotolerance in multiple sclerosis with autologous hematopoietic stem cell transplant. Front Immunol. 2018;9:410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muraro PA, Robins H, Malhotra S, Howell M, Phippard D, Desmarais C, et al. T cell repertoire following autologous stem cell transplantation for multiple sclerosis. J Clin Invest. 2014;124:1168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rezvany MR, Tehrani MJ, Karlsson C, Lundin J, Rabbani H, Osterborg A, et al. Reconstitution of the T-cell repertoire following treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with B-cell chronic lymphocytic leukaemia. Br J Haematol. 2006;135:475–85.

    Article  CAS  PubMed  Google Scholar 

  44. Muraro PA, Douek DC, Packer A, Chung K, Guenaga FJ, Cassiani-Ingoni R, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201:805–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun W, Popat U, Hutton G, Zang YC, Krance R, Carrum G, et al. Characteristics of T-cell receptor repertoire and myelin-reactive T cells reconstituted from autologous haematopoietic stem-cell grafts in multiple sclerosis. Brain. 2004;127:996–1008.

    Article  PubMed  Google Scholar 

  46. Li Y, Xu L. Evaluation of TCR repertoire diversity in patients after hematopoietic stem cell transplantation. Stem Cell Investig. 2015;2:17.

    PubMed  PubMed Central  Google Scholar 

  47. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M. Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood. 2000;95:2813–20.

    CAS  PubMed  Google Scholar 

  48. Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003;34:461–75.

    Article  CAS  PubMed  Google Scholar 

  49. Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000;290:1775–9.

    Article  CAS  PubMed  Google Scholar 

  50. Locatelli F, Corti S, Donadoni C, Guglieri M, Capra F, Strazzer S, et al. Neuronal differentiation of murine bone marrow Thy-1- and Sca-1-positive cells. J Hematother Stem Cell Res. 2003;12:727–34.

    Article  CAS  PubMed  Google Scholar 

  51. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779–82.

    Article  CAS  PubMed  Google Scholar 

  52. Karussis D, Vaknin-Dembinsky A. Hematopoietic stem cell transplantation in multiple sclerosis: a review of the clinical experience and a report of an international meeting. Expert Rev Clin Immunol. 2010;6:347–52.

    Article  PubMed  Google Scholar 

  53. Karussis D, Petrou P, Vourka-Karussis U, Kassis I. Hematopoietic stem cell transplantation in multiple sclerosis. Expert Rev Neurother. 2013;13:567–78.

    Article  CAS  PubMed  Google Scholar 

  54. Karussis D. Worldwide status of clinical experimentation with stem cells in neurologic diseases. Neurology. 2012;78:1334–6.

    Article  PubMed  Google Scholar 

  55. Karussis D, Petrou P, Kassis I. Clinical experience with stem cells and other cell therapies in neurological diseases. J Neurol Sci. 2013;324:1–9.

    Article  CAS  PubMed  Google Scholar 

  56. Karussis D, Slavin S. Hematopoietic stem cell transplantation in multiple sclerosis: experimental evidence to rethink the procedures. J Neurol Sci. 2004;223:59–64.

    Article  CAS  PubMed  Google Scholar 

  57. Karussis D, Vourka-Karussis U, Mizrachi-Koll R, Abramsky O. Acute/relapsing experimental autoimmune encephalomyelitis: induction of long lasting, antigen-specific tolerance by syngeneic bone marrow transplantation. Mult Scler. 1999;5:17–21.

    Article  CAS  PubMed  Google Scholar 

  58. Karussis DM, Slavin S, Ben-Nun A, Ovadia H, Vourka-Karussis U, Lehmann D, et al. Chronic-relapsing experimental autoimmune encephalomyelitis (CR-EAE): treatment and induction of tolerance, with high dose cyclophosphamide followed by syngeneic bone marrow transplantation. J Neuroimmunol. 1992;39:201–10.

    Article  CAS  PubMed  Google Scholar 

  59. Karussis DM, Slavin S, Lehmann D, Mizrachi-Koll R, Abramsky O, Ben-Nun A. Prevention of experimental autoimmune encephalomyelitis and induction of tolerance with acute immunosuppression followed by syngeneic bone marrow transplantation. J Immunol. 1992;148:1693–8.

    CAS  PubMed  Google Scholar 

  60. Karussis DM, Vourka-Karussis U, Lehmann D, Abramsky O, Ben-Nun A, Slavin S. Immunomodulation of autoimmunity in MRL/lpr mice with syngeneic bone marrow transplantation (SBMT). Clin Exp Immunol. 1995;100:111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Karussis DM, Vourka-Karussis U, Lehmann D, Ovadia H, Mizrachi-Koll R, Ben-Nun A, et al. Prevention and reversal of adoptively transferred, chronic relapsing experimental autoimmune encephalomyelitis with a single high dose cytoreductive treatment followed by syngeneic bone marrow transplantation. J Clin Invest. 1993;92:765–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burt RK, Cohen BA, Russell E, Spero K, Joshi A, Oyama Y, et al. Hematopoietic stem cell transplantation for progressive multiple sclerosis: failure of a total body irradiation-based conditioning regimen to prevent disease progression in patients with high disability scores. Blood. 2003;102:2373–8.

    Article  CAS  PubMed  Google Scholar 

  63. Burt RK, Loh Y, Cohen B, Stefoski D, Balabanov R, Katsamakis G, et al. Autologous non-myeloablative haemopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study. Lancet Neurol. 2009;8:244–53.

    Article  CAS  PubMed  Google Scholar 

  64. Fassas A. Autologous stem cell transplants in treatment of multiple sclerosis: where we stand and future prospects. Int J Hematol. 2002;76(Suppl 1):223–5.

    Article  PubMed  Google Scholar 

  65. Fassas A, Anagnostopoulos A, Kazis A, Kapinas K, Sakellari I, Kimiskidis V, et al. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transplant. 1997;20:631–8.

    Article  CAS  PubMed  Google Scholar 

  66. Fassas A, Passweg JR, Anagnostopoulos A, Kazis A, Kozak T, Havrdova E, et al. Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol. 2002;249:1088–97.

    Article  CAS  PubMed  Google Scholar 

  67. Mancardi GL, Sormani MP, Di Gioia M, Vuolo L, Gualandi F, Amato MP, et al. Autologous haematopoietic stem cell transplantation with an intermediate intensity conditioning regimen in multiple sclerosis: the Italian multi-centre experience. Mult Scler. 2012;18:835–42.

    Article  CAS  PubMed  Google Scholar 

  68. Nash RA, Bowen JD, McSweeney PA, Pavletic SZ, Maravilla KR, Park MS, et al. High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood. 2003;102:2364–72.

    Article  CAS  PubMed  Google Scholar 

  69. Curro D, Vuolo L, Gualandi F, Bacigalupo A, Roccatagliata L, Capello E, et al. Low intensity lympho-ablative regimen followed by autologous hematopoietic stem cell transplantation in severe forms of multiple sclerosis: a MRI-based clinical study. Mult Scler. 2015;21:1423–30.

    Article  CAS  PubMed  Google Scholar 

  70. Muraro PA, Pasquini M, Atkins HL, Bowen JD, Farge D, Fassas A, et al. Long-term outcomes after autologous hematopoietic stem cell transplantation for multiple sclerosis. JAMA Neurol. 2017;74:459–69.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Atkins HL, Bowman M, Allan D, Anstee G, Arnold DL, Bar-Or A, et al. Immunoablation and autologous haemopoietic stem-cell transplantation for aggressive multiple sclerosis: a multicentre single-group phase 2 trial. Lancet. 2016;388:576–85.

    Article  PubMed  Google Scholar 

  72. Atkins HL, Freedman MS. Five questions answered: a review of autologous hematopoietic stem cell transplantation for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14:888–93.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Minagawa H, Takenaka A, Itoyama Y, Mori R. Experimental allergic encephalomyelitis in the Lewis rat. A model of predictable relapse by cyclophosphamide. J Neurol Sci. 1987;78:225–35.

    Article  CAS  PubMed  Google Scholar 

  74. Polman CH, Matthaei I, de Groot CJ, Koetsier JC, Sminia T, Dijkstra CD. Low-dose cyclosporin A induces relapsing remitting experimental allergic encephalomyelitis in the Lewis rat. J Neuroimmunol. 1988;17:209–16.

    Article  CAS  PubMed  Google Scholar 

  75. Mancardi GL, Sormani MP, Gualandi F, Saiz A, Carreras E, Merelli E, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a phase II trial. Neurology. 2015;84:981–8.

    Article  CAS  PubMed  Google Scholar 

  76. Nash RA, Hutton GJ, Racke MK, Popat U, Devine SM, Griffith LM, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol. 2015;72:159–69.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chen JT, Collins DL, Atkins HL, Freedman MS, Galal A, Arnold DL, et al. Brain atrophy after immunoablation and stem cell transplantation in multiple sclerosis. Neurology. 2006;66:1935–7.

    Article  CAS  PubMed  Google Scholar 

  78. Sormani MP, Muraro PA, Schiavetti I, Signori A, Laroni A, Saccardi R, et al. Autologous hematopoietic stem cell transplantation in multiple sclerosis: a meta-analysis. Neurology. 2017;88:2115–22.

    Article  PubMed  Google Scholar 

  79. Giovannoni G, Marta M, Davis A, Turner B, Gnanapavan S, Schmierer K. Switching patients at high risk of PML from natalizumab to another disease-modifying therapy. Pract Neurol. 2016;16:389–93.

    Article  PubMed  Google Scholar 

  80. Coles AJ, Cohen JA, Fox EJ, Giovannoni G, Hartung HP, Havrdova E, Schippling S, et al. CARE-MS II and CAMMS03409 Investigators. Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings. Neurology. 2017;89(11):1117–26. https://doi.org/10.1212/WNL.0000000000004354.

  81. Havrdova E, Arnold DL, Cohen JA, Hartung HP, Fox EJ, Giovannoni G, Schippling S, et al. CARE-MS I and CAMMS03409 investigators. Alemtuzumab CARE-MS I 5-year follow-up: durable efficacy in the absence of continuous MS therapy. Neurology. 2017;89(11):1107-16. https://doi.org/10.1212/WNL.0000000000004313.

  82. Giovannoni G. Cladribine to treat relapsing forms of multiple sclerosis. Neurotherapeutics. 2017;14:874–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Giovannoni G, Soelberg Sorensen P, Cook S, Rammohan K, Rieckmann P, Comi G, et al. Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: results from the randomized extension trial of the CLARITY study. Mult Scler. 2017;24(12):1594–1604.

    Article  CAS  PubMed  Google Scholar 

  84. Leist TP, Weissert R. Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol. 2011;34:28–35.

    Article  CAS  PubMed  Google Scholar 

  85. Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm. 2015;2:e158.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung HP, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13:257–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Karussis.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare in relation to the current manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karussis, D., Petrou, P. Immune reconstitution therapy (IRT) in multiple sclerosis: the rationale. Immunol Res 66, 642–648 (2018). https://doi.org/10.1007/s12026-018-9032-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-018-9032-5

Keywords

Navigation