Skip to main content

Advertisement

Log in

Role of T cell-derived exosomes in immunoregulation

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Exosomes are small membrane vesicles of endocytic origin that are secreted by most cells. They are composed of a lipid bilayer containing transmembrane proteins and enclosing cytosolic proteins and RNA, mediating intercellular communication between different cell types in the body, and thus influencing various physiological and pathological functions of both recipient and parent cells. For their nanolevel structures with a stable nature and various biological functions, studies of exosomes have been the subject of increasing interest in the past few years. It is widely known that different T cell subsets play important roles in cellular and humoral immunity, and their exosomes were also reported to exert similar biological functions. While several groups reported the secretion of exosomes by various T cells, the systematic summary involved in these exosomes are deficient. In this review, we will summarize the structure and functions of exosomes derived from T cells in recent reports, discuss emerging therapeutic opportunities, and consider the associated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. 1986. J Immunol (Baltimore, Md: 1950). 2005;175(1):5–14.

    CAS  Google Scholar 

  2. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6(11):1123–32. https://doi.org/10.1038/ni1254.

    Article  PubMed  CAS  Google Scholar 

  3. Liu Y, Tang X, Tian J, Zhu C, Peng H, Rui K, et al. Th17/Treg cells imbalance and GITRL profile in patients with Hashimoto’s thyroiditis. Int J Mol Sci. 2014;15(12):21674–86. https://doi.org/10.3390/ijms151221674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol. 2010;11(6):527–34. https://doi.org/10.1038/ni.1867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bryant VL, Ma CS, Avery DT, Li Y, Good KL, Corcoran LM, et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J Immunol (Baltimore, Md : 1950). 2007;179(12):8180–90.

    Article  CAS  Google Scholar 

  6. Zhu C, Ma J, Liu Y, Tong J, Tian J, Chen J, et al. Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. The Journal of Clinical Endocrinology Metabolism. 2012;97(3):943–50. https://doi.org/10.1210/jc.2011-2003.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol (Baltimore, Md : 1950). 2004;172(2):834–42.

    Article  CAS  Google Scholar 

  8. Singer SJ. Intercellular communication and cell-cell adhesion. Science (New York, NY). 1992;255(5052):1671–7.

    Article  CAS  Google Scholar 

  9. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262(19):9412–20.

    PubMed  CAS  Google Scholar 

  10. Buschow SI, Nolte-t' Hoen EN, van Niel G, Pols MS, ten Broeke T, Lauwen M, et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic (Copenhagen, Denmark). 2009;10(10):1528–42. https://doi.org/10.1111/j.1600-0854.2009.00963.x.

    Article  CAS  Google Scholar 

  11. Rana S, Yue S, Stadel D, Zoller M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol. 2012;44(9):1574–84. https://doi.org/10.1016/j.biocel.2012.06.018.

    Article  PubMed  CAS  Google Scholar 

  12. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–66. https://doi.org/10.1182/blood-2011-02-338004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Aliotta JM, Pereira M, Li M, Amaral A, Sorokina A, Dooner MS, et al. Stable cell fate changes in marrow cells induced by lung-derived microvesicles. J Extracell Vesicles. 2012;1 https://doi.org/10.3402/jev.v1i0.18163.

  14. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3 https://doi.org/10.3402/jev.v3.24641.

  15. Kapoor NR, Chadha R, Kumar S, Choedon T, Reddy VS, Kumar V. The HBx gene of hepatitis B virus can influence hepatic microenvironment via exosomes by transferring its mRNA and protein. Virus Res. 2017;240:166–74. https://doi.org/10.1016/j.virusres.2017.08.009.

    Article  PubMed  CAS  Google Scholar 

  16. Wei F, Ma C, Zhou T, Dong X, Luo Q, Geng L, et al. Exosomes derived from gemcitabine-resistant cells transfer malignant phenotypic traits via delivery of miRNA-222-3p. Mol Cancer. 2017;16(1):132. https://doi.org/10.1186/s12943-017-0694-8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang H, Wang Y, Bai M, Wang J, Zhu K, Liu R, et al. Exosomes serve as nano-particles to suppress tumor growth and angiogenesis in gastric cancer by delivering HGF siRNA. Cancer Sci. 2017;109:629–41. https://doi.org/10.1111/cas.13488.

    Article  Google Scholar 

  18. Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014;41(1):89–103. https://doi.org/10.1016/j.immuni.2014.05.019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282. https://doi.org/10.1038/ncomms1285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Admyre C, Johansson SM, Paulie S, Gabrielsson S. Direct exosome stimulation of peripheral human T cells detected by ELISPOT. Eur J Immunol. 2006;36(7):1772–81. https://doi.org/10.1002/eji.200535615.

    Article  PubMed  CAS  Google Scholar 

  21. Xu Y, Liu Y, Yang C, Kang L, Wang M, Hu J, et al. Macrophages transfer antigens to dendritic cells by releasing exosomes containing dead-cell-associated antigens partially through a ceramide-dependent pathway to enhance CD4(+) T-cell responses. Immunology. 2016;149(2):157–71. https://doi.org/10.1111/imm.12630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu H, Gao W, Yuan J, Wu C, Yao K, Zhang L, et al. Exosomes derived from dendritic cells improve cardiac function via activation of CD4(+) T lymphocytes after myocardial infarction. J Mol Cell Cardiol. 2016;91:123–33. https://doi.org/10.1016/j.yjmcc.2015.12.028.

    Article  PubMed  CAS  Google Scholar 

  23. Simhadri VR, Reiners KS, Hansen HP, Topolar D, Simhadri VL, Nohroudi K, et al. Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One. 2008;3(10):e3377. https://doi.org/10.1371/journal.pone.0003377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bu N, Wu H, Zhang G, Zhan S, Zhang R, Sun H, et al. Exosomes from dendritic cells loaded with chaperone-rich cell lysates elicit a potent T cell immune response against intracranial glioma in mice. J Mol Neurosci : MN. 2015;56(3):631–43. https://doi.org/10.1007/s12031-015-0506-9.

    Article  PubMed  CAS  Google Scholar 

  25. Fang H, Shao S, Jiang M, Dang E, Shen S, Zhang J, et al. Proinflammatory role of blister fluid-derived exosomes in bullous pemphigoid. J Pathol. 2018;245:114–25. https://doi.org/10.1002/path.5061.

    Article  PubMed  CAS  Google Scholar 

  26. Singhto N, Kanlaya R, Nilnumkhum A, Thongboonkerd V. Roles of macrophage exosomes in immune response to calcium oxalate monohydrate crystals. Front Immunol. 2018;9:316. https://doi.org/10.3389/fimmu.2018.00316.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wahlund CJE, Gucluler G, Hiltbrunner S, Veerman RE, Naslund TI, Gabrielsson S. Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo. Sci Rep. 2017;7(1):17095. https://doi.org/10.1038/s41598-017-16609-6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang F, Wan J, Hu W, Hao S. Enhancement of anti-leukemia immunity by leukemia-derived exosomes via downregulation of TGF-beta1 expression. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology. 2017;44(1):240–54. https://doi.org/10.1159/000484677.

    Article  Google Scholar 

  29. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood. 2007;110(9):3234–44. https://doi.org/10.1182/blood-2007-03-079152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Qazi KR, Torregrosa Paredes P, Dahlberg B, Grunewald J, Eklund A, Gabrielsson S. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 2010;65(11):1016–24. https://doi.org/10.1136/thx.2009.132027.

    Article  PubMed  Google Scholar 

  31. Kato T, Miyaki S, Ishitobi H, Nakamura Y, Nakasa T, Lotz MK, et al. Exosomes from IL-1beta stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res Ther. 2014;16(4):R163. https://doi.org/10.1186/ar4679.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wen SW, Sceneay J, Lima LG, Wong CS, Becker M, Krumeich S, et al. The biodistribution and immune suppressive effects of breast cancer-derived exosomes. Cancer Res. 2016;76(23):6816–27. https://doi.org/10.1158/0008-5472.can-16-0868.

    Article  PubMed  CAS  Google Scholar 

  33. Schuler PJ, Saze Z, Hong CS, Muller L, Gillespie DG, Cheng D, et al. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol. 2014;177(2):531–43. https://doi.org/10.1111/cei.12354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via toll-like receptor signaling. J Biol Chem. 2013;288(51):36691–702. https://doi.org/10.1074/jbc.M113.512806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 2009;124(11):2621–33. https://doi.org/10.1002/ijc.24249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–9. https://doi.org/10.3324/haematol.2010.039743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu Y, Xiang X, Zhuang X, Zhang S, Liu C, Cheng Z, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol. 2010;176(5):2490–9. https://doi.org/10.2353/ajpath.2010.090777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Tian X, Ma J, Wang T, Tian J, Zhang Y, Mao L, et al. Long non-coding RNA HOXA transcript antisense RNA myeloid-specific 1-HOXA1 axis downregulates the immunosuppressive activity of myeloid-derived suppressor cells in lung Cancer. Front Immunol. 2018;9:473. https://doi.org/10.3389/fimmu.2018.00473.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Tian J, Tang X, Rui K, Tian X, Ma J, et al. Exosomes released by granulocytic myeloid-derived suppressor cells attenuate DSS-induced colitis in mice. Oncotarget. 2016;7(13):15356–68. https://doi.org/10.18632/oncotarget.7324.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yu X, Huang C, Song B, Xiao Y, Fang M, Feng J, et al. CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol. 2013;285(1–2):62–8. https://doi.org/10.1016/j.cellimm.2013.06.010.

    Article  PubMed  CAS  Google Scholar 

  41. Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012;44(11):2060–4. https://doi.org/10.1016/j.biocel.2012.08.007.

    Article  PubMed  CAS  Google Scholar 

  42. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241–4. https://doi.org/10.1093/nar/gkr828.

    Article  PubMed  CAS  Google Scholar 

  43. Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. https://doi.org/10.1002/pmic.200900351.

    Article  PubMed  CAS  Google Scholar 

  44. Record M, Carayon K, Poirot M, Silvente-Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841(1):108–20. https://doi.org/10.1016/j.bbalip.2013.10.004.

    Article  PubMed  CAS  Google Scholar 

  45. Osteikoetxea X, Balogh A, Szabo-Taylor K, Nemeth A, Szabo TG, Paloczi K, et al. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One. 2015;10(3):e0121184. https://doi.org/10.1371/journal.pone.0121184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9. https://doi.org/10.1038/ncb1596.

    Article  PubMed  CAS  Google Scholar 

  47. Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937–49. https://doi.org/10.1093/nar/gks832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Nolte-'t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, t Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272–85. https://doi.org/10.1093/nar/gks658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981–4. https://doi.org/10.1038/cr.2015.82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gutzeit C, Nagy N, Gentile M, Lyberg K, Gumz J, Vallhov H, et al. Exosomes derived from Burkitt's lymphoma cell lines induce proliferation, differentiation, and class-switch recombination in B cells. J Immunol (Baltimore, Md : 1950). 2014;192(12):5852–62. https://doi.org/10.4049/jimmunol.1302068.

    Article  CAS  Google Scholar 

  51. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol (Baltimore, Md : 1950). 2001;166(12):7309–18.

    Article  CAS  Google Scholar 

  52. Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 1999;147(3):599–610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 1998;4(5):594–600.

    Article  PubMed  CAS  Google Scholar 

  54. Saunderson SC, Dunn AC, Crocker PR, McLellan AD. CD169 mediates the capture of exosomes in spleen and lymph node. Blood. 2014;123(2):208–16. https://doi.org/10.1182/blood-2013-03-489732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G, Mager I, et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles. 2015;4:26316. https://doi.org/10.3402/jev.v4.26316.

    Article  PubMed  Google Scholar 

  56. Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49. https://doi.org/10.1016/j.biomaterials.2017.10.012.

    Article  PubMed  CAS  Google Scholar 

  57. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol (Baltimore, Md : 1950). 2002;168(7):3235–41.

    Article  CAS  Google Scholar 

  58. van der Vlist EJ, Arkesteijn GJ, van de Lest CH, Stoorvogel W, Nolte-t' Hoen EN, Wauben MH. CD4(+) T cell activation promotes the differential release of distinct populations of nanosized vesicles. J Extracell Vesicles. 2012;1 https://doi.org/10.3402/jev.v1i0.18364.

  59. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/complex. J Immunol. 2002;168(7):3235–41. https://doi.org/10.4049/jimmunol.168.7.3235.

    Article  PubMed  CAS  Google Scholar 

  60. Baek H, Ye M, Kang GH, Lee C, Lee G, Choi DB, et al. Neuroprotective effects of CD4+CD25+Foxp3+ regulatory T cells in a 3xTg-AD Alzheimer’s disease model. Oncotarget. 2016;7(43):69347–57. https://doi.org/10.18632/oncotarget.12469.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Agarwal A, Fanelli G, Letizia M, Tung SL, Boardman D, Lechler R, et al. Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation. Front Immunol. 2014;5:555. https://doi.org/10.3389/fimmu.2014.00555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 2013;43(9):2430–40. https://doi.org/10.1002/eji.201242909.

    Article  PubMed  CAS  Google Scholar 

  63. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol (Baltimore, Md : 1950). 2011;187(2):676–83. https://doi.org/10.4049/jimmunol.1003884.

    Article  CAS  Google Scholar 

  64. Yang Y, Bucan V, Baehre H, von der Ohe J, Otte A, Hass R. Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol. 2015;47(1):244–52. https://doi.org/10.3892/ijo.2015.3001.

    Article  PubMed  CAS  Google Scholar 

  65. Beckett K, Monier S, Palmer L, Alexandre C, Green H, Bonneil E, et al. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic (Copenhagen, Denmark). 2013;14(1):82–96. https://doi.org/10.1111/tra.12016.

    Article  CAS  Google Scholar 

  66. Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, et al. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 2013;5(4):986–96. https://doi.org/10.1016/j.celrep.2013.10.019.

    Article  PubMed  CAS  Google Scholar 

  67. Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013;5(5):1159–68. https://doi.org/10.1016/j.celrep.2013.10.050.

    Article  PubMed  CAS  Google Scholar 

  68. Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, et al. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene. 2015;34(3):290–302. https://doi.org/10.1038/onc.2013.560.

    Article  PubMed  CAS  Google Scholar 

  69. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–85. https://doi.org/10.1038/ncb2502.

    Article  PubMed  CAS  Google Scholar 

  70. Budhu S, Schaer DA, Li Y, Toledo-Crow R, Panageas K, Yang X, et al. Blockade of surface-bound TGF-beta on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal. 2017;10(494):eaak9702. https://doi.org/10.1126/scisignal.aak9702.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kapur R, Kim M, Aslam R, McVey MJ, Tabuchi A, Luo A, et al. T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10. Blood. 2017;129(18):2557–69. https://doi.org/10.1182/blood-2016-12-758185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kim SH, Lechman ER, Bianco N, Menon R, Keravala A, Nash J, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol (Baltimore, Md : 1950). 2005;174(10):6440–8.

    Article  CAS  Google Scholar 

  73. Cai Z, Zhang W, Yang F, Yu L, Yu Z, Pan J, et al. Immunosuppressive exosomes from TGF-beta1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 2012;22(3):607–10. https://doi.org/10.1038/cr.2011.196.

    Article  PubMed  CAS  Google Scholar 

  74. Zhang H, Xie Y, Li W, Chibbar R, Xiong S, Xiang J. CD4(+) T cell-released exosomes inhibit CD8(+) cytotoxic T-lymphocyte responses and antitumor immunity. Cell Mol Immunol. 2011;8(1):23–30. https://doi.org/10.1038/cmi.2010.59.

    Article  PubMed  CAS  Google Scholar 

  75. Xie Y, Zhang H, Li W, Deng Y, Munegowda MA, Chibbar R, et al. Dendritic cells recruit T cell exosomes via exosomal LFA-1 leading to inhibition of CD8+ CTL responses through downregulation of peptide/MHC class I and Fas ligand-mediated cytotoxicity. J Immunol. 2010;185(9):5268–78. https://doi.org/10.4049/jimmunol.1000386.

    Article  PubMed  CAS  Google Scholar 

  76. Nazimek K, Ptak W, Nowak B, Ptak M, Askenase PW, Bryniarski K. Macrophages play an essential role in antigen-specific immune suppression mediated by T CD8(+) cell-derived exosomes. Immunology. 2015;146(1):23–32. https://doi.org/10.1111/imm.12466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Bryniarski K, Ptak W, Jayakumar A, Pullmann K, Caplan MJ, Chairoungdua A, et al. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy and Clin Immunol. 2013;132(1):170–81. https://doi.org/10.1016/j.jaci.2013.04.048.

    Article  CAS  Google Scholar 

  78. DeRita RM, Zerlanko B, Singh A, Lu H, Iozzo RV, Benovic JL, et al. C-Src, insulin-like growth factor I receptor, G-protein-coupled receptor kinases and focal adhesion kinase are enriched into prostate cancer cell exosomes. J Cell Biochem. 2017;118(1):66–73. https://doi.org/10.1002/jcb.25611.

    Article  PubMed  CAS  Google Scholar 

  79. Wahlgren J, Karlson Tde L, Glader P, Telemo E, Valadi H. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One. 2012;7(11):e49723. https://doi.org/10.1371/journal.pone.0049723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med. 1991;173(5):1099–109.

    Article  PubMed  CAS  Google Scholar 

  81. Tumne A, Prasad VS, Chen Y, Stolz DB, Saha K, Ratner DM, et al. Noncytotoxic suppression of human immunodeficiency virus type 1 transcription by exosomes secreted from CD8+ T cells. J Virol. 2009;83(9):4354–64. https://doi.org/10.1128/JVI.02629-08.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Durlanik S, Loyal L, Stark R, Sercan Alp O, Hartung A, Radbruch A, et al. CD40L expression by CD4+ but not CD8+ T cells regulates antiviral immune responses in acute LCMV infection in mice. Eur J Immunol. 2016;46(11):2566–73. https://doi.org/10.1002/eji.201646420.

    Article  PubMed  CAS  Google Scholar 

  83. Metzger TC, Long H, Potluri S, Pertel T, Bailey-Bucktrout SL, Lin JC, et al. ICOS promotes the function of CD4+ effector T cells during anti-OX40-mediated tumor rejection. Cancer Res. 2016;76(13):3684–9. https://doi.org/10.1158/0008-5472.can-15-3412.

    Article  PubMed  CAS  Google Scholar 

  84. Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, et al. Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol (Baltimore, Md : 1950). 2012;188(12):5954–61. https://doi.org/10.4049/jimmunol.1103466.

    Article  CAS  Google Scholar 

  85. Kaur S, Singh SP, Elkahloun AG, Wu W, Abu-Asab MS, Roberts DD. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biology: Journal of the International Society for Matrix Biology. 2014;37:49–59. https://doi.org/10.1016/j.matbio.2014.05.007.

    Article  CAS  Google Scholar 

  86. Min H, Sun X, Yang X, Zhu H, Liu J, Wang Y, et al. Exosomes derived from irradiated esophageal carcinoma-infiltrating T cells promote metastasis by inducing the epithelial-mesenchymal transition in esophageal Cancer cells. Pathol Oncol Res: POR. 2017;24:11–8. https://doi.org/10.1007/s12253-016-0185-z.

    Article  PubMed  Google Scholar 

  87. Bosque A, Dietz L, Gallego-Lleyda A, Sanclemente M, Iturralde M, Naval J, et al. Comparative proteomics of exosomes secreted by tumoral Jurkat T cells and normal human T cell blasts unravels a potential tumorigenic role for valosin-containing protein. Oncotarget. 2016;7(20):29287–305. https://doi.org/10.18632/oncotarget.8678.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tucci M, Passarelli A, Mannavola F, Stucci LS, Ascierto PA, Capone M, et al. Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. Oncoimmunology. 2018;7(2):e1387706. https://doi.org/10.1080/2162402x.2017.1387706.

    Article  PubMed  CAS  Google Scholar 

  89. Rodriguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16(1):156. https://doi.org/10.1186/s12943-017-0726-4.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42(11):7290–304. https://doi.org/10.1093/nar/gku347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, et al. Human saliva-derived exosomes: comparing methods of isolation. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society. 2015;63(3):181–9. https://doi.org/10.1369/0022155414564219.

    Article  CAS  Google Scholar 

  92. Gunasekaran M, Xu Z, Nayak DK, Sharma M, Hachem R, Walia R, et al. Donor-derived exosomes with lung self-antigens in human lung allograft rejection. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2017;17(2):474–84. https://doi.org/10.1111/ajt.13915.

    Article  CAS  Google Scholar 

  93. Atay S, Banskota S, Crow J, Sethi G, Rink L, Godwin AK. Oncogenic KIT-containing exosomes increase gastrointestinal stromal tumor cell invasion. Proc Natl Acad Sci U S A. 2014;111(2):711–6. https://doi.org/10.1073/pnas.1310501111.

    Article  PubMed  CAS  Google Scholar 

  94. Munster M, Fremder E, Miller V, Ben-Tsedek N, Davidi S, Scherer SJ, et al. Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles. PLoS One. 2014;9(4):e95983. https://doi.org/10.1371/journal.pone.0095983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–82. https://doi.org/10.1038/nature14581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Kornek M, Lynch M, Mehta SH, Lai M, Exley M, Afdhal NH, et al. Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology. 2012;143(2):448–58. https://doi.org/10.1053/j.gastro.2012.04.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, Paster JT, LeGuern C, Germana S, et al. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Science. Immunology. 2016;1(1) https://doi.org/10.1126/sciimmunol.aaf8759.

  98. Obstfeld AE, Frey NV, Mansfield K, Lacey SF, June CH, Porter DL, et al. Cytokine release syndrome associated with chimeric-antigen receptor T-cell therapy: clinicopathological insights. Blood. 2017;130(23):2569–72. https://doi.org/10.1182/blood-2017-08-802413.

    Article  PubMed  CAS  Google Scholar 

  99. Shi L, Mai S, Israels S, Browne K, Trapani JA, Greenberg AH. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J Exp Med. 1997;185(5):855–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14. https://doi.org/10.1007/s11095-014-1593-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Tang XJ, Sun XY, Huang KM, Zhang L, Yang ZS, Zou DD, et al. Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy. Oncotarget. 2015;6(42):44179–90. https://doi.org/10.18632/oncotarget.6175.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Admyre C, Bohle B, Johansson SM, Focke-Tejkl M, Valenta R, Scheynius A, et al. B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines. The Journal of Allergy and Clinical Immunology. 2007;120(6):1418–24. https://doi.org/10.1016/j.jaci.2007.06.040.

    Article  PubMed  CAS  Google Scholar 

  103. Papp K, Vegh P, Prechl J, Kerekes K, Kovacs J, Csikos G, et al. B lymphocytes and macrophages release cell membrane deposited C3-fragments on exosomes with T cell response-enhancing capacity. Mol Immunol. 2008;45(8):2343–51. https://doi.org/10.1016/j.molimm.2007.11.021.

    Article  PubMed  CAS  Google Scholar 

  104. Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, et al. Immune surveillance properties of human NK cell-derived exosomes. J Immunol (Baltimore, Md : 1950). 2012;189(6):2833–42. https://doi.org/10.4049/jimmunol.1101988.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81771759, 31470881, 31711530025), Natural Science Foundation of Jiangsu (Grant No. BK20150533), Project funded by China Postdoctoral Science Foundation (Grant Nos. 2016 M590423, 2017 T100336), Jiangsu Province’s Key Medical Talents Program (Grant No. ZDRCB2016018), Summit of the Six Top Talents Program of Jiangsu Province (Grant No. 2015-WSN-116), and Jiangsu Province “333” Project (Grant No. BRA2017128).

Author information

Authors and Affiliations

Authors

Contributions

JL discussed the ideas, wrote, and discussed the text with other authors. JW and JT discussed the text with other authors. SW conceived the idea and topic of the review, read, and made suggestions in the final text.

Corresponding authors

Correspondence to Jie Tian or Shengjun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wu, J., Tian, J. et al. Role of T cell-derived exosomes in immunoregulation. Immunol Res 66, 313–322 (2018). https://doi.org/10.1007/s12026-018-9000-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-018-9000-0

Keywords

Navigation