Skip to main content

Advertisement

Log in

Innate defense regulator IDR-1018 activates human mast cells through G protein-, phospholipase C-, MAPK- and NF-ĸB-sensitive pathways

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Host defense (antimicrobial) peptides not only display antimicrobial activities against numerous pathogens but also exert a broader spectrum of immune-modulating functions. Innate defense regulators (IDRs) are a class of host defense peptides synthetically developed from natural or endogenous cationic host defense peptides. Of the IDRs developed to date, IDR-1018 is more efficient not only in killing bacteria but also in regulating the various functions of macrophages and neutrophils and accelerating the wound healing process. Because mast cells intimately participate in wound healing and a number of host defense peptides involved in wound healing are also known to activate mast cells, this study aimed to investigate the effects of IDR-1018 on mast cell activation. Here, we showed that IDR-1018 induced the degranulation of LAD2 human mast cells and caused their production of leukotrienes, prostaglandins and various cytokines and chemokines, including granulocyte-macrophage colony-stimulating factor, interleukin-8, monocyte chemoattractant protein-1 and -3, macrophage-inflammatory protein-1α and -1β, and tumor necrosis factor-α. Furthermore, IDR-1018 increased intracellular calcium mobilization and induced mast cell chemotaxis. The mast cell activation was markedly suppressed by pertussis toxin, U-73122, U0126, SB203580, JNK inhibitor II, and NF-κB activation inhibitor II, suggesting the involvement of G-protein, phospholipase C, ERK, p38, JNK and NF-κB pathways, respectively, in IDR-1018-induced mast cell activation. Notably, we confirmed that IDR-1018 caused the phosphorylation of MAPKs and IκB. Altogether, the current study suggests a novel immunomodulatory role of IDR-1018 through its ability to recruit and activate human mast cells at the sites of inflammation and wounds.

Highlights

  • We report that IDR-1018 stimulates various functions of human mast cells.

  • IDR-1018-induced mast cell activation is mediated through G protein, PLC, MAPK and NF-κB pathways.

  • IDR-1018 will be a useful therapeutic agent for wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CysLT:

cysteinyl leukotriene

EIA:

enzyme immunoassay

ELISA:

enzyme-linked immunosorbent assay

ERK:

extracellular signal-regulated kinase

GM-CSF:

granulocyte-macrophage colony-stimulating factor

IDR:

innate defense regulator

IL:

interleukin

JNK:

c-Jun N-terminal kinase

LT:

leukotriene

MAPK:

mitogen-activated protein kinase

MCP:

monocyte chemoattractant protein

MIP:

macrophage-inflammatory protein

NF-κB:

nuclear factor-κB

PG:

prostaglandin

PLC:

phospholipase C

TNF:

tumor necrosis factor

References

  1. Niyonsaba F, Kiatsurayanon C, Ogawa H. The role of human beta-defensins in allergic diseases. Clin Exp Allergy. 2016;46(12):1522–30.

    Article  CAS  PubMed  Google Scholar 

  2. Niyonsaba F, Nagaoka I, Ogawa H. Human defensins and cathelicidins in the skin: beyond direct antimicrobial properties. Crit Rev Immunol. 2006;26(6):545–76.

    Article  CAS  PubMed  Google Scholar 

  3. Niyonsaba F, Nagaoka I, Ogawa H, Okumura K. Multifunctional antimicrobial proteins and peptides: natural activators of immune systems. Curr Pharm Des. 2009;15(21):2393–413.

    Article  CAS  PubMed  Google Scholar 

  4. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005;17(4):359–65.

    Article  CAS  PubMed  Google Scholar 

  5. Hancock RE, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol. 2012;10(4):243–54.

    Article  CAS  PubMed  Google Scholar 

  6. Yeung AT, Gellatly SL, Hancock RE. Multifunctional cationic host defence peptides and their clinical applications. Cell Mol Life Sci. 2011;68(13):2161–76.

    Article  CAS  PubMed  Google Scholar 

  7. Easton DM, Nijnik A, Mayer ML, Hancock RE. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 2009;27(10):582–90.

    Article  CAS  PubMed  Google Scholar 

  8. Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, et al. An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol. 2007;25(4):465–72.

    Article  CAS  PubMed  Google Scholar 

  9. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott MR, Easton DM, et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol. 2010;184(5):2539–50.

    Article  CAS  PubMed  Google Scholar 

  10. Madera L, Hancock RE. Synthetic immunomodulatory peptide IDR-1002 enhances monocyte migration and adhesion on fibronectin. J Innate Immun. 2012;4(5–6):553–68.

    Article  CAS  PubMed  Google Scholar 

  11. Madera L, Hancock RE. Anti-infective peptide IDR-1002 augments monocyte chemotaxis towards CCR5 chemokines. Biochem Biophys Res Commun. 2015;464(3):800–6.

    Article  CAS  PubMed  Google Scholar 

  12. Niyonsaba F, Madera L, Afacan N, Okumura K, Ogawa H, Hancock RE. The innate defense regulator peptides IDR-HH2, IDR-1002, and IDR-1018 modulate human neutrophil functions. J Leukoc Biol. 2013;94(1):159–70.

  13. Wieczorek M, Jenssen H, Kindrachuk J, Scott WR, Elliott M, Hilpert K, et al. Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol. 2010;17(9):970–80.

    Article  CAS  PubMed  Google Scholar 

  14. Pena OM, Afacan N, Pistolic J, Chen C, Madera L, Falsafi R, et al. Synthetic cationic peptide IDR-1018 modulates human macrophage differentiation. PLoS One. 2013;8(1):e52449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bolouri H, Savman K, Wang W, Thomas A, Maurer N, Dullaghan E, et al. Innate defense regulator peptide 1018 protects against perinatal brain injury. Ann Neurol. 2014;75(3):395–410.

    Article  CAS  PubMed  Google Scholar 

  16. Steinstraesser L, Hirsch T, Schulte M, Kueckelhaus M, Jacobsen F, Mersch EA, et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One. 2012;7(8):e39373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodewald HR, Feyerabend TB. Widespread immunological functions of mast cells: fact or fiction? Immunity. 2012;37(1):13–24.

    Article  CAS  PubMed  Google Scholar 

  18. Abraham SN, St John AL. Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 2010;10(6):440–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M. Mast cells as “tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol. 2005;23:749–86.

    Article  CAS  PubMed  Google Scholar 

  20. Moon TC, St Laurent CD, Morris KE, Marcet C, Yoshimura T, Sekar Y, et al. Advances in mast cell biology: new understanding of heterogeneity and function. Mucosal Immunol. 2010;3(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  21. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454(7203):445–54.

  22. Maurer M, Theoharides T, Granstein RD, Bischoff SC, Bienenstock J, Henz B, et al. What is the physiological function of mast cells? Exp Dermatol. 2003;12(6):886–910.

    Article  CAS  PubMed  Google Scholar 

  23. Beghdadi W, Madjene LC, Benhamou M, Charles N, Gautier G, Launay P, et al. Mast cells as cellular sensors in inflammation and immunity. Front Immunol. 2011;2:37.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wulff BC, Wilgus TA. Mast cell activity in the healing wound: more than meets the eye? Exp Dermatol. 2013;22(8):507–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gronberg A, Mahlapuu M, Stahle M, Whately-Smith C, Rollman O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen. 2014;22(5):613–21.

    Article  PubMed  Google Scholar 

  26. Hirsch T, Spielmann M, Zuhaili B, Fossum M, Metzig M, Koehler T, et al. Human beta-defensin-3 promotes wound healing in infected diabetic wounds. J Gene Med. 2009;11(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  27. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol. 2016;25(3):167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol. 2007;127(3):594–604.

    Article  CAS  PubMed  Google Scholar 

  29. Kirshenbaum AS, Akin C, Wu Y, Rottem M, Goff JP, Beaven MA, et al. Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcepsilonRI or FcgammaRI. Leuk Res. 2003;27(8):677–82.

    Article  CAS  PubMed  Google Scholar 

  30. Niyonsaba F, Ushio H, Hara M, Yokoi H, Tominaga M, Takamori K, et al. Antimicrobial peptides human beta-defensins and cathelicidin LL-37 induce the secretion of a pruritogenic cytokine IL-31 by human mast cells. J Immunol. 2010;184(7):3526–34.

    Article  CAS  PubMed  Google Scholar 

  31. Aung G, Niyonsaba F, Ushio H, Kajiwara N, Saito H, Ikeda S, et al. Catestatin, a neuroendocrine antimicrobial peptide, induces human mast cell migration, degranulation and production of cytokines and chemokines. Immunology. 2011;132(4):527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen X, Niyonsaba F, Ushio H, Hara M, Yokoi H, Matsumoto K, et al. Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol. 2007;37(2):434–44.

    Article  CAS  PubMed  Google Scholar 

  33. Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology. 2002;106(1):20–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol. 2001;31(4):1066–75.

    Article  CAS  PubMed  Google Scholar 

  35. Subramanian H, Gupta K, Guo Q, Price R, Ali H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to receptor phosphorylation, desensitization, and internalization. J Biol Chem. 2011;286(52):44739–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Subramanian H, Gupta K, Lee D, Bayir AK, Ahn H, Ali H. Beta-Defensins activate human mast cells via Mas-related gene X2. J Immunol. 2013;191(1):345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schwartz LB, Austen KF, Wasserman SI. Immunologic release of beta-hexosaminidase and beta-glucuronidase from purified rat serosal mast cells. J Immunol. 1979;123(4):1445–50.

    CAS  PubMed  Google Scholar 

  38. Lee J, Veatch SL, Baird B, Holowka D. Molecular mechanisms of spontaneous and directed mast cell motility. J Leukoc Biol. 2012;92(5):1029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pundir P, Kulka M. The role of G protein-coupled receptors in mast cell activation by antimicrobial peptides: is there a connection? Immunol Cell Biol. 2010;88(6):632–40.

    Article  CAS  PubMed  Google Scholar 

  40. Coneely J, Kennelly R, Bouchier-Hayes D, Winter DC. Mast cell degranulation is essential for anastomotic healing in well perfused and poorly perfused rat colon. J Surg Res. 2010;164(1):e73–6.

    Article  PubMed  Google Scholar 

  41. Noli C, Miolo A. The mast cell in wound healing. Vet Dermatol. 2001;12(6):303–13.

    Article  CAS  PubMed  Google Scholar 

  42. Rivas-Santiago B, Serrano CJ, Enciso-Moreno JA. Susceptibility to infectious diseases based on antimicrobial peptide production. Infect Immun. 2009;77(11):4690–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Turner-Brannen E, Choi KY, Lippert DN, Cortens JP, Hancock RE, El-Gabalawy H, et al. Modulation of interleukin-1beta-induced inflammatory responses by a synthetic cationic innate defence regulator peptide, IDR-1002, in synovial fibroblasts. Arthritis Res Ther. 2011;13(4):R129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haney EF, Mansour SC, Hilchie AL, de la Fuente-Nunez C, Hancock RE. High throughput screening methods for assessing antibiofilm and immunomodulatory activities of synthetic peptides. Peptides. 2015;71:276–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huante-Mendoza A, Silva-Garcia O, Oviedo-Boyso J, Hancock RE, Baizabal-Aguirre VM. Peptide IDR-1002 inhibits NF-kappaB nuclear translocation by inhibition of IkappaBalpha degradation and activates p38/ERK1/2-MSK1-dependent CREB phosphorylation in macrophages stimulated with lipopolysaccharide. Front Immunol. 2016;7:533.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mann A, Niekisch K, Schirmacher P, Blessing M. Granulocyte-macrophage colony-stimulating factor is essential for normal wound healing. J Investig Dermatol Symp Proc. 2006;11(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  47. Williams CM, Galli SJ. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med. 2000;192(3):455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gillitzer R, Goebeler M. Chemokines in cutaneous wound healing. J Leukoc Biol. 2001;69(4):513–21.

    CAS  PubMed  Google Scholar 

  49. Johnatty RN, Taub DD, Reeder SP, Turcovski-Corrales SM, Cottam DW, Stephenson TJ, et al. Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol. 1997;158(5):2327–33.

    CAS  PubMed  Google Scholar 

  50. Caley MP, Martins VL, O'Toole EA. Metalloproteinases and wound healing. Adv Wound Care (New Rochelle). 2015;4(4):225–34.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Engelhardt E, Toksoy A, Goebeler M, Debus S, Brocker EB, Gillitzer R. Chemokines IL-8, GROalpha, MCP-1, IP-10, and Mig are sequentially and differentially expressed during phase-specific infiltration of leukocyte subsets in human wound healing. Am J Pathol. 1998;153(6):1849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.

    Article  PubMed  Google Scholar 

  53. Bousquenaud M, Schwartz C, Leonard F, Rolland-Turner M, Wagner D, Devaux Y. Monocyte chemotactic protein 3 is a homing factor for circulating angiogenic cells. Cardiovasc Res. 2012;94(3):519–25.

    Article  CAS  PubMed  Google Scholar 

  54. Werry TD, Wilkinson GF, Willars GB. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem J. 2003;374(Pt 2):281–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kehrl JH. Heterotrimeric G protein signaling: roles in immune function and fine-tuning by RGS proteins. Immunity. 1998;8(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  56. Knall C, Johnson GL. G-protein regulatory pathways: rocketing into the twenty-first century. J Cell Biochem Suppl. 1998;30-31:137–46.

    Article  CAS  PubMed  Google Scholar 

  57. Clapham DE. Calcium signaling. Cell. 1995;80(2):259–68.

    Article  CAS  PubMed  Google Scholar 

  58. Pundir P, Catalli A, Leggiadro C, Douglas SE, Kulka M. Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor. Mucosal Immunol. 2014;7(1):177–87.

    Article  CAS  PubMed  Google Scholar 

  59. Oskeritzian CA. Mast cells and wound healing. Adv Wound Care (New Rochelle). 2012;1(1):23–8.

    Article  Google Scholar 

  60. Tatemoto K, Nozaki Y, Tsuda R, Konno S, Tomura K, Furuno M, et al. Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochem Biophys Res Commun. 2006;349(4):1322–8.

    Article  CAS  PubMed  Google Scholar 

  61. Lembo PM, Grazzini E, Groblewski T, O'Donnell D, Roy MO, Zhang J, et al. Proenkephalin A gene products activate a new family of sensory neuron--specific GPCRs. Nat Neurosci. 2002;5(3):201–9.

    Article  CAS  PubMed  Google Scholar 

  62. Kiatsurayanon C, Niyonsaba F, Chieosilapatham P, Okumura K, Ikeda S, Ogawa H. Angiogenic peptide (AG)-30/5C activates human keratinocytes to produce cytokines/chemokines and to migrate and proliferate via MrgX receptors. J Dermatol Sci. 2016;83(3):190–9.

    Article  CAS  PubMed  Google Scholar 

  63. Ferry X, Brehin S, Kamel R, Landry Y. G protein-dependent activation of mast cell by peptides and basic secretagogues. Peptides. 2002;23(8):1507–15.

    Article  CAS  PubMed  Google Scholar 

  64. Ballif BA, Blenis J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ. 2001;12(8):397–408.

    CAS  PubMed  Google Scholar 

  65. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40.

    Article  CAS  PubMed  Google Scholar 

  66. Chen X, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, et al. Human cathelicidin LL-37 increases vascular permeability in the skin via mast cell activation, and phosphorylates MAP kinases p38 and ERK in mast cells. J Dermatol Sci. 2006;43(1):63–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express our deepest gratitude to all the members of the Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine for their comments and Michiyo Matsumoto for secretarial assistance. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant number: 26461703 to F.N.) and the Atopy (Allergy) Research Center, Juntendo University, Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Niyonsaba.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Figure S1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanashima, K., Chieosilapatham, P., Yoshimoto, E. et al. Innate defense regulator IDR-1018 activates human mast cells through G protein-, phospholipase C-, MAPK- and NF-ĸB-sensitive pathways. Immunol Res 65, 920–931 (2017). https://doi.org/10.1007/s12026-017-8932-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8932-0

Keywords

Navigation