Skip to main content

Advertisement

Log in

Suppression of interleukin 17 contributes to the immunomodulatory effects of adipose-derived stem cells in a murine model of systemic lupus erythematosus

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Due to roles in immunoregulation and low immunogenicity, mesenchymal stem cells have been suggested to be potent regulators of the immune response and may represent promising treatments for autoimmune disease. Adipose-derived stem cells (ADSCs), stromal cells derived from adipose tissue, were investigated with allogeneic ADSCs in B6.MRL/lpr mice, a murine model of systemic lupus erythematosus (SLE). We intravenously injected allogeneic ADSCs into SLE mice after disease onset and report that ADSCs reduced anti-ds DNA antibodies in serum and proteinuria in SLE mice. Also, ADSCs decreased IL-17 and IL-6 expression in serum of SLE mice. ADSCs alleviated renal damage and inflammatory cell infiltration and edema of the renal interstitium. Furthermore, ADSCs significantly downregulated renal IL-17 and CD68 expression, suggesting that ADSCs suppressed renal inflammation. ADSCs also decreased IL-17 mRNA expression and increased Foxp3, ROR-γt and miR-23b mRNA expression in renal tissue in SLE mice. ADSCs reduced renal protein expression of TAB 2 and IKK-α in SLE mice. Thus, ADSCs may be a novel potential therapy for treating SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun W, Jiao Y, Cui B, Gao X, Xia Y, Zhao Y. Immune complexes activate human endothelium involving the cell-signaling HMGB1-RAGE axis in the pathogenesis of lupus vasculitis. Lab Invest. 2013;93:626–38.

    Article  CAS  PubMed  Google Scholar 

  2. Wichainun R, Kasitanon N, Wangkaew S, Hongsongkiat S, Sukitawut W, Louthrenoo W. Sensitivity and specificity of ANA and anti-dsDNA in the diagnosis of systemic lupus erythematosus: a comparison using control sera obtained from healthy individuals and patients with multiple medical problems. Asian Pac J Allergy Immunol. 2013;31:292–8.

    Article  CAS  PubMed  Google Scholar 

  3. Enocsson H, Sjöwall C, Wirestam L, Dahle C, Kastbom A, Rönnelid J, Wetterö J, Skogh T. Four anti-dsDNA antibody assays in relation to systemic lupus erythematosus disease specificity and activity. J Rheumatol. 2015;42:817–25.

    Article  CAS  PubMed  Google Scholar 

  4. Chan VS, Tsang HH, Tam RC, Lu L, Lau CS. B-cell-targeted therapies in systemic lupus erythematosus. Cell Mol Immunol. 2013;10:133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Konya C, Paz Z, Tsokos GC. The role of T cells in systemic lupus erythematosus: an update. Curr Opin Rheumatol. 2014;26:493–501.

    Article  CAS  PubMed  Google Scholar 

  6. Strzępa A, Szczepanik M. IL-17-expressing cells as a potential therapeutic target for treatment of immunological disorders. Pharmacol Rep. 2011;63:30–44.

    Article  PubMed  Google Scholar 

  7. Dolff S, Quandt D, Wilde B, Feldkamp T, Hua F, Cai X, Specker C, Kribben A, Kallenberg CG, Witzke O. Increased expression of costimulatory markers CD134 and CD80 on interleukin-17 producing T cells in patients with systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R150.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen DY, Chen YM, Tzang BS, Lan JL, Hsu TC. Th17-related cytokines in systemic lupus erythematosus patients with dilated cardiomyopathies: a possible linkage to parvovirus B19 infection. PLoS ONE. 2014;9:e113889.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen XQ, Yu YC, Deng HH, Sun JZ, Dai Z, Wu YW, Yang M. Plasma IL-17A is increased in new-onset SLE patients and associated with disease activity. J Clin Immunol. 2010;30:221–5.

    Article  CAS  PubMed  Google Scholar 

  10. Shah K, Lee WW, Lee SH, Kim SH, Kang SW, Craft J, Kang I. Dysregulated balance of Th17 and Th1 cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R53.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT, Tsokos GC. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol. 2008;181:8761–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Amarilyo G, Lourenço EV, Shi FD, La Cava A. IL-17 promotes murine lupus. J Immunol. 2014;193:540–3.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, Liang D, He D, Wang H, Liu W, Shi Y, Harley JB, Shen N, Qian Y. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB 2, TAB 3 and IKK-α. Nat Med. 2012;18:1077–86.

    Article  CAS  PubMed  Google Scholar 

  14. Harasymiak-Krzyżanowska I, Niedojadło A, Karwat J, Kotuła L, Gil-Kulik P, Sawiuk M, Kocki J. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications. Cell Mol Biol Lett. 2013;18:479–93.

    PubMed  Google Scholar 

  15. Wang D, Zhang H, Liang J, Li X, Feng X, Wang H, Hua B, Liu B, Lu L, Gilkeson GS, Silver RM, Chen W, Shi S, Sun L. Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years of experience. Cell Transplant. 2013;22:2267–77.

    Article  PubMed  Google Scholar 

  16. Ungerer C, Quade-Lyssy P, Radeke HH, Henschler R, Königs C, Köhl U, Seifried E, Schüttrumpf J. Galectin-9 is a suppressor of T and B cells and predicts the immune modulatory potential of mesenchymal stromal cell preparations. Stem Cells Dev. 2014;23:755–66.

    Article  CAS  PubMed  Google Scholar 

  17. Glenn JD, Smith MD, Calabresi PA, Whartenby KA. Mesenchymal stem cells differentially modulate effector CD8+ T cell subsets and exacerbate experimental autoimmune encephalomyelitis. Stem Cells. 2014;32:2744–55.

    Article  CAS  PubMed  Google Scholar 

  18. Crop MJ, Baan CC, Korevaar SS, Ijzermans JN, Pescatori M, Stubbs AP, van Ijcken WF, Dahlke MH, Eggenhofer E, Weimar W, Hoogduijn MJ. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells. Clin Exp Immunol. 2010;162:474–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lai K, Zeng K, Zeng F, Wei J, Tan G. Allogeneic adipose-derived stem cells suppress Th17 lymphocytes in patients with active lupus in vitro. Acta Biochim Biophys Sin (Shanghai). 2011;43:805–12.

    Article  CAS  Google Scholar 

  20. Choi EW, Shin IS, Park SY, Park JH, Kim JS, Yoon EJ, Kang SK, Ra JC, Hong SH. Reversal of serologic, immunologic, and histologic dysfunction in mice with systemic lupus erythematosus by long-term serial adipose tissue-derived mesenchymal stem cell transplantation. Arthritis Rheum. 2012;64:243–53.

    Article  CAS  PubMed  Google Scholar 

  21. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.

    Article  CAS  PubMed  Google Scholar 

  23. Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337–42.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou X, Bailey-Bucktrout S, Jeker LT, Bluestone JA. Plasticity of CD4+FoxP3+ T cells. Curr Opin Immunol. 2009;21:281–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Santiago-Raber ML, Laporte C, Reininger L, Izui S. Genetic basis of murine lupus. Autoimmun Rev. 2004;3:33–9.

    Article  CAS  PubMed  Google Scholar 

  26. Qu WM, Miyazaki T, Terada M, Lu LM, Nishihara M, Yamada A, Mori S, Nakamura Y, Ogasawara H, Yazawa C, Nakatsuru S, Nose M. Genetic dissection of vasculitis in MRL/lpr lupus mice: a novel susceptibility locus involving the CD72c allele. Eur J Immunol. 2000;30:2027–37.

    Article  CAS  PubMed  Google Scholar 

  27. Lott JA, Stephan VA, Pritchard KA Jr. Evaluation of the Coomassie Brilliant Blue G-250 method for urinary protein. Clin Chem. 1983;29:1946–50.

    CAS  PubMed  Google Scholar 

  28. Li Q, Tian SF, Guo Y, Niu X, Hu B, Guo SC, Wang NS, Wang Y. Transplantation of induced pluripotent stem cell-derived renal stem cells improved acute kidney injury. Cell Biosci. 2015;5:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  30. Masutani K, Akahoshi M, Tsuruya K, Tokumoto M, Ninomiya T, Kohsaka T, Fukuda K, Kanai H, Nakashima H, Otsuka T, Hirakata H. Predominance of Th1 immune response in diffuse proliferative lupus nephritis. Arthritis Rheum. 2001;44:2097–106.

    Article  CAS  PubMed  Google Scholar 

  31. Jeltsch-David H, Muller S. Neuropsychiatric systemic lupus erythematosus and cognitive dysfunction: the MRL-lpr mouse strain as a model. Autoimmun Rev. 2014;13:963–73.

    Article  PubMed  Google Scholar 

  32. Shin MS, Lee N, Kang I. Effector T-cell subsets in systemic lupus erythematosus: update focusing on Th17 cells. Curr Opin Rheumatol. 2011;23:444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hou LF, He SJ, Li X, Yang Y, He PL, Zhou Y, Zhu FH, Yang YF, Li Y, Tang W, Zuo JP. Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthritis Rheum. 2011;63:2445–55.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt T, Paust HJ, Krebs CF, Turner JE, Kaffke A, Bennstein SB, Koyro T, Peters A, Velden J, Hünemörder S, Haag F, Steinmetz OM, Mittrücker HW, Stahl RA, Panzer U. Function of the Th17/interleukin-17A immune response in murine lupus nephritis. Arthritis Rheumatol. 2015;67:475–87.

    Article  CAS  PubMed  Google Scholar 

  35. Summers SA, Odobasic D, Khouri MB, Steinmetz OM, Yang Y, Holdsworth SR, Kitching AR. Endogenous interleukin (IL)-17A promotes pristane-induced systemic autoimmunity and lupus nephritis induced by pristane. Clin Exp Immunol. 2014;176:341–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen J, Liao MY, Gao XL, Zhong Q, Tang TT, Yu X, Liao YH, Cheng X. IL-17A induces pro-inflammatory cytokines production in macrophages via MAPKinases, NF-κB and AP-1. Cell Physiol Biochem. 2013;32:1265–74.

    Article  CAS  PubMed  Google Scholar 

  37. Silva MT. Neutrophils and macrophages work in concert as inducers and effectors of adaptive immunity against extracellular and intracellular microbial pathogens. J Leukoc Biol. 2010;87:805–13.

    Article  CAS  PubMed  Google Scholar 

  38. Hsu SC, Wang LT, Yao CL, Lai HY, Chan KY, Liu BS, Chong P, Lee OK, Chen HW. Mesenchymal stem cells promote neutrophil activation by inducing IL-17 production in CD4+CD45RO+ T cells. Immunobiology. 2013;218:90–5.

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Stearns NA, Li X, Pisetsky DS. The effect of polyamines on the binding of anti-DNA antibodies from patients with SLE and normal human subjects. Clin Immunol. 2014;153:94–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Koo HS, Kim S, Chin HJ. Remission of proteinuria indicates good prognosis in patients with diffuse proliferative lupus nephritis. Lupus. 2016;25:3–11.

    Article  CAS  PubMed  Google Scholar 

  41. Sun L, Wang D, Liang J, Zhang H, Feng X, Wang H, Hua B, Liu B, Ye S, Hu X, Xu W, Zeng X, Hou Y, Gilkeson GS, Silver RM, Lu L, Shi S. Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 2010;62:2467–75.

    Article  CAS  PubMed  Google Scholar 

  42. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGF beta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24:179–89.

    Article  CAS  PubMed  Google Scholar 

  43. Manolova I, Gerenova J, Ivanova M. Serum levels of transforming growth factor-β1 (TGF-β1) in patients with systemic lupus erythematosus and Hashimoto’s thyroiditis. Eur Cytokine Netw. 2013;24:69–74.

    CAS  PubMed  Google Scholar 

  44. Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH. Interferon-γ and systemic autoimmunity. Discov Med. 2013;16:123–31.

    PubMed  PubMed Central  Google Scholar 

  45. Rana A, Minz RW, Aggarwal R, Anand S, Pasricha N, Singh S. Gene expression of cytokines (TNF-α, IFN-γ), serum profiles of IL-17 and IL-23 in paediatric systemic lupus erythematosus. Lupus. 2012;21:1105–12.

    Article  CAS  PubMed  Google Scholar 

  46. Luz-Crawford P, Kurte M, Bravo-Alegría J, Contreras R, Nova-Lamperti E, Tejedor G, Noël D, Jorgensen C, Figueroa F, Djouad F, Carrión F. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther. 2013;4:65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17 + T helper cells. Cell. 2006;126:1121–33.

    Article  CAS  PubMed  Google Scholar 

  48. Kojima H, Muromoto R, Takahashi M, Takeuchi S, Takeda Y, Jetten AM, Matsuda T. Inhibitory effects of azole-type fungicides on interleukin-17 gene expression via retinoic acid receptor-related orphan receptors α and γ. Toxicol Appl Pharmacol. 2012;259:338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang W, Liu F, Chen Y, Song L, Dai W, Li C, Weng D, Chen J. Reduction of IL-17A might suppress the Th1 response and promote the Th2 response by boosting the function of Treg cells during silica-induced inflammatory response in vitro. Mediators Inflamm. 2014;2014:570894.

    PubMed  PubMed Central  Google Scholar 

  50. Sundrud MS, Rao A. Regulation of T helper 17 differentiation by orphan nuclear receptors: it’s not just ROR gamma t anymore. Immunity. 2008;28:5–7.

    Article  CAS  PubMed  Google Scholar 

  51. Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, Holan V. The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev. 2012;21:901–10.

    Article  CAS  PubMed  Google Scholar 

  52. Divekar AA, Dubey S, Gangalum PR, Singh RR. Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol. 2011;186:924–30.

    Article  CAS  PubMed  Google Scholar 

  53. Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K. Role of the TAB 2-related protein TAB 3 in IL-1 and TNF signaling. EMBO J. 2003;22:6277–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Number 81301371), the Guangdong Natural Science Foundation (Grant Number 2014A030313350) and the Research Foundation of Southern Medical University (Grant Number B1012028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuan Lai or Shaogang Qu.

Ethics declarations

Conflict of interest

Authors declare of no conflict of interest.

Additional information

Xiaoliang He and Yunlong Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, Y., Zhu, A. et al. Suppression of interleukin 17 contributes to the immunomodulatory effects of adipose-derived stem cells in a murine model of systemic lupus erythematosus. Immunol Res 64, 1157–1167 (2016). https://doi.org/10.1007/s12026-016-8866-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8866-y

Keywords

Navigation