Skip to main content

Advertisement

Log in

Redefining the major peanut allergens

  • Immunology in Colorado
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Food allergy has become a major public health concern in westernized countries, and allergic reactions to peanuts are particularly common and severe. Allergens are defined as antigens that elicit an IgE response, and most allergenic materials (e.g., pollens, danders, and foods) contain multiple allergenic proteins. This has led to the concept that there are “major” allergens and allergens of less importance. “Major allergens” have been defined as allergens that bind a large amount of IgE from the majority of patients and have biologic activity. However, the ability of an allergen to cross-link complexes of IgE and its high-affinity receptor FcεRI (IgE/FcεRI), which we have termed its allergic effector activity, does not correlate well with assays of IgE binding. To identify the proteins that are the most active allergens in peanuts, we and others have employed in vitro model assays of allergen-mediated cross-linking of IgE/FcεRI complexes and have demonstrated that the most potent allergens are not necessarily those that bind the most IgE. The importance of a specific allergen can be determined by measuring the allergic effector activity of that allergen following purification under non-denaturing conditions and by specifically removing the allergen from a complex allergenic extract either by chromatography or by specific immunodepletion. In our studies of peanut allergens, our laboratory has found that two related allergens, Ara h 2 and Ara h 6, together account for the majority of the effector activity in a crude peanut extract. Furthermore, murine studies demonstrated that Ara h 2 and Ara h 6 are not only the major elicitors of anaphylaxis in this system, but also can effectively desensitize peanut-allergic mice. As a result of these observations, we propose that the definition of a major allergen should be based on the potency of that allergen in assays of allergic effector activity and demonstration that removal of that allergen from an extract results in loss of potency. Using these criteria, Ara h 2 and Ara h 6 are the major peanut allergens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

20-kD fraction:

Gel-filtration chromatography fraction containing Ara h 2 and Ara h 6

Ara h 2/6:

Ara h 2 plus Ara h 6 as found in the 20-kD fraction

BHR:

Basophil histamine release

CPE:

Crude peanut extract

MMCP-1:

Mouse mast cell protease 1

References

  1. Otsu K, Dreskin SC. Peanut allergy: an evolving clinical challenge. Discov Med. 2011;12(65):319–28.

    PubMed  Google Scholar 

  2. Burks AW. Peanut allergy. Lancet. 2008;371(9623):1538–46.

    Article  PubMed  CAS  Google Scholar 

  3. Sampson HA. Adverse reactions to foods. In: Middleton Jr E, Reed CE, Ellis EF, Adkinson Jr NF, Yunginger JW, Busse WW, editors. Allergy, principles and practice. St. Louis: Mosby; 1998. p. 1162–82.

    Google Scholar 

  4. Sampson HA. Clinical practice. Peanut allergy. N Engl J Med. 2002;346(17):1294–9.

    Article  PubMed  Google Scholar 

  5. Sampson HA. Food allergy. JAMA. 1997;278(22):1888–94.

    Article  PubMed  CAS  Google Scholar 

  6. Pansare M, Kamat D. Peanut allergy. Curr Opin Pediatr. 2010;22(5):642–6. doi:10.1097/MOP.0b013e32833d95cb.

    PubMed  Google Scholar 

  7. Nowak-Wegrzyn A, Sampson HA. Future therapies for food allergies. J Allergy Clin Immunol. 2011;127(3):558–73.

    Article  PubMed  Google Scholar 

  8. Lowenstein H. Quantitative immunoelectrophoretic methods as a tool for the analysis and isolation of allergens. Prog Allergy. 1978;25:1–62.

    PubMed  CAS  Google Scholar 

  9. Marsh DG, Goodfriend L, King TP, Lowenstein H, Platts-Mills TA. Allergen nomenclature. Bull World Health Organ. 1986;64(5):767–74.

    PubMed  CAS  Google Scholar 

  10. Chapman MD. Allergen nomenclature. In: Lockey RF, Bukantz SC, Bousquet J, editors. Allergens and allergen immunotherapy. New York: Marcel Dekker, Inc.; 2004. p. 51–64.

    Google Scholar 

  11. King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W. Allergen nomenclature. Allergy. 1995;50(9):765–74.

    Article  PubMed  CAS  Google Scholar 

  12. Chapman MD, Pomes A, Breiteneder H, Ferreira F. Nomenclature and structural biology of allergens. J Allergy Clin Immunol. 2007;119(2):414–20.

    Article  PubMed  CAS  Google Scholar 

  13. Burks AW, Cockrell G, Stanley JS, Helm RM, Bannon GA. Recombinant peanut allergen Ara h I expression and IgE binding in patients with peanut hypersensitivity. J Clin Invest. 1995;96(4):1715–21.

    Article  PubMed  CAS  Google Scholar 

  14. Stanley JS, King N, Burks AW, Huang SK, Sampson H, Cockrell G, et al. Identification and mutational analysis of the immunodominant IgE binding epitopes of the major peanut allergen Ara h 2. Arch Biochem Biophys. 1997;342(2):244–53.

    Article  PubMed  CAS  Google Scholar 

  15. Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M, Becker WM. Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. Int Arch Allergy Immunol. 1999;119(4):265–74.

    Article  PubMed  CAS  Google Scholar 

  16. Rabjohn P, Helm EM, Stanley JS, West CM, Sampson HA, Burks AW, et al. Molecular cloning and epitope analysis of the peanut allergen Ara h 3. J Clin Invest. 1999;103(4):535–42.

    Article  PubMed  CAS  Google Scholar 

  17. Pons L, Chery C, Romano A, Namour F, Artesani MC, Gueant JL. The 18 kDa peanut oleosin is a candidate allergen for IgE-mediated reactions to peanuts. Allergy. 2002;57(Suppl 72):88–93.

    Article  PubMed  Google Scholar 

  18. Mittag D, Akkerdaas J, Ballmer-Weber BK, Vogel L, Wensing M, Becker WM, et al. Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. J Allergy Clin Immunol. 2004;114(6):1410–7.

    Article  PubMed  CAS  Google Scholar 

  19. Dodo H, Konan K, Viquez O. A genetic engineering strategy to eliminate peanut allergy. Curr Allergy Asthma Rep. 2005;5(1):67–73.

    Article  PubMed  CAS  Google Scholar 

  20. Scholl I, Boltz-Nitulescu G, Jensen-Jarolim E. Review of novel particulate antigen delivery systems with special focus on treatment of type I allergy. J Control Release. 2005;104(1):1–27.

    Article  PubMed  Google Scholar 

  21. Li XM. Beyond allergen avoidance: update on developing therapies for peanut allergy. Curr Opin Allergy Clin Immunol. 2005;5(3):287–92.

    Article  PubMed  Google Scholar 

  22. Astier C, Morisset M, Roitel O, Codreanu F, Jacquenet S, Franck P, et al. Predictive value of skin prick tests using recombinant allergens for diagnosis of peanut allergy. J Allergy Clin Immunol. 2006;118(1):250–6.

    Article  PubMed  CAS  Google Scholar 

  23. van Ree R, Chapman MD, Ferreira F, Vieths S, Bryan D, Cromwell O, et al. The CREATE project: development of certified reference materials for allergenic products and validation of methods for their quantification. Allergy. 2008;63(3):310–26.

    Article  PubMed  Google Scholar 

  24. Burks W, Sampson HA, Bannon GA. Peanut allergens. Allergy. 1998;53(8):725–30.

    Article  PubMed  CAS  Google Scholar 

  25. Moneret-Vautrin DA. Modifications of allergenicity linked to food technologies. Allerg Immunol (Paris). 1998;30(1):9–13.

    CAS  Google Scholar 

  26. Nelson HS, Lahr J, Rule R, Bock A, Leung D. Treatment of anaphylactic sensitivity to peanuts by immunotherapy with injections of aqueous peanut extract. J Allergy Clin Immunol. 1997;99(6 Pt 1):744–51.

    Article  PubMed  CAS  Google Scholar 

  27. Li XM, Srivastava K, Grishin A, Huang CK, Schofield B, Burks W, et al. Persistent protective effect of heat-killed Escherichia coli producing “engineered,” recombinant peanut proteins in a murine model of peanut allergy. J Allergy Clin Immunol. 2003;112(1):159–67.

    Article  PubMed  CAS  Google Scholar 

  28. Li XM, Srivastava K, Huleatt JW, Bottomly K, Burks AW, Sampson HA. Engineered recombinant peanut protein and heat-killed Listeria monocytogenes coadministration protects against peanut-induced anaphylaxis in a murine model. J Immunol. 2003;170(6):3289–95.

    PubMed  CAS  Google Scholar 

  29. Srivastava KD, Kattan JD, Zou ZM, Li JH, Zhang L, Wallenstein S, et al. The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of peanut allergy. J Allergy Clin Immunol. 2005;115(1):171–8.

    Article  PubMed  Google Scholar 

  30. Leung DY, Shanahan WR Jr, Li XM, Sampson HA. New approaches for the treatment of anaphylaxis. Novartis Found Symp. 2004;257:248–60.

    Article  PubMed  CAS  Google Scholar 

  31. Scurlock AM, Burks AW. Peanut allergenicity. Ann Allergy Asthma Immunol. 2004;93(5 Suppl 3):S12–8.

    Article  PubMed  CAS  Google Scholar 

  32. Palmer GW, Dibbern DA, Burks AW, Bannon GA, Bock SA, Porterfield HS, et al. Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clin Immunol. 2005;115:301–12.

    Article  Google Scholar 

  33. Breiteneder H, Mills EN. Molecular properties of food allergens. J Allergy Clin Immunol. 2005;115(1):14–23.

    Article  PubMed  CAS  Google Scholar 

  34. Breiteneder H, Radauer C. A classification of plant food allergens. J Allergy Clin Immunol. 2004;113(5):821–30.

    Article  PubMed  CAS  Google Scholar 

  35. Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills EN. Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. J Allergy Clin Immunol. 2005;115(1):163–70.

    Article  PubMed  CAS  Google Scholar 

  36. Hoffmann-Sommergruber K, Mills EN. Food allergen protein families and their structural characteristics and application in component-resolved diagnosis: new data from the EuroPrevall project. Anal Bioanal Chem. 2009;395(1):25–35.

    Article  PubMed  CAS  Google Scholar 

  37. Burks AW, Shin D, Cockrell G, Stanley JS, Helm RM, Bannon GA. Mapping and mutational analysis of the IgE-binding epitopes on Ara h 1, a legume vicilin protein and a major allergen in peanut hypersensitivity. Eur J Biochem. 1997;245(2):334–9.

    Article  PubMed  CAS  Google Scholar 

  38. Shin DS, Compadre CM, Maleki SJ, Kopper RA, Sampson H, Huang SK, et al. Biochemical and structural analysis of the IgE binding sites on ara h1, an abundant and highly allergenic peanut protein. J Biol Chem. 1998;273(22):13753–9.

    Article  PubMed  CAS  Google Scholar 

  39. Maleki SJ, Kopper RA, Shin DS, Park CW, Compadre CM, Sampson H, et al. Structure of the major peanut allergen Ara h 1 may protect IgE-binding epitopes from degradation. J Immunol. 2000;164(11):5844–9.

    PubMed  CAS  Google Scholar 

  40. Chatel JM, Bernard H, Orson FM. Isolation and characterization of two complete Ara h 2 isoforms cDNA. Int Arch Allergy Immunol. 2003;131(1):14–8.

    Article  PubMed  CAS  Google Scholar 

  41. Hales BJ, Bosco A, Mills KL, Hazell LA, Loh R, Holt PG, et al. Isoforms of the major peanut allergen Ara h 2: IgE binding in children with peanut allergy. Int Arch Allergy Immunol. 2004;135(2):101–7.

    Article  PubMed  CAS  Google Scholar 

  42. Lehmann K, Schweimer K, Reese G, Randow S, Suhr M, Becker WM, et al. Structure and stability of 2S albumin-type peanut allergens: implications for the severity of peanut allergic reactions. Biochem J. 2006;395(3):463–72.

    Article  PubMed  CAS  Google Scholar 

  43. Koppelman SJ, Knol EF, Vlooswijk RA, Wensing M, Knulst AC, Hefle SL, et al. Peanut allergen Ara h 3: isolation from peanuts and biochemical characterization. Allergy. 2003;58(11):1144–51.

    Article  PubMed  CAS  Google Scholar 

  44. Suhr M, Wicklein D, Lepp U, Becker WM. Isolation and characterization of natural Ara h 6: evidence for a further peanut allergen with putative clinical relevance based on resistance to pepsin digestion and heat. Mol Nutr Food Res. 2004;48(5):390–9.

    Article  PubMed  CAS  Google Scholar 

  45. Koppelman SJ, de Jong GA, Laaper-Ertmann M, Peeters KA, Knulst AC, Hefle SL, et al. Purification and immunoglobulin E-binding properties of peanut allergen Ara h 6: evidence for cross-reactivity with Ara h 2. Clin Exp Allergy. 2005;35(4):490–7.

    Article  PubMed  CAS  Google Scholar 

  46. Chen X, Wang Q, El-Mezayen R, Zhuang Y, Dreskin SC. Ara h 2 and Ara h 6 have similar allergic effector activity and are substantially redundant. Int Arch Allergy Immunol. 2012 (in press).

  47. Krause S, Reese G, Randow S, Zennaro D, Quaratino D, Palazzo P, et al. Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J Allergy Clin Immunol. 2009;124(4):771–8.

    Article  PubMed  CAS  Google Scholar 

  48. Stevenson SE, Chu Y, Ozias-Akins P, Thelen JJ. Validation of gel-free, label-free quantitative proteomics approaches: applications for seed allergen profiling. J Proteomics. 2009;72(3):555–66.

    Article  PubMed  CAS  Google Scholar 

  49. Nicolaou N, Custovic A. Molecular diagnosis of peanut and legume allergy. Curr Opin Allergy Clin Immunol. 2011;11(3):222–8.

    Article  PubMed  CAS  Google Scholar 

  50. Burks AW, Williams LW, Connaughton C, Cockrell G, O’Brien TJ, Helm RM. Identification and characterization of a second major peanut allergen, Ara h II, with use of the sera of patients with atopic dermatitis and positive peanut challenge. J Allergy Clin Immunol. 1992;90(6 Pt 1):962–9.

    Article  PubMed  CAS  Google Scholar 

  51. Sampson HA. Update on food allergy. J Allergy Clin Immunol. 2004;113(5):805–19.

    Article  PubMed  CAS  Google Scholar 

  52. Schmitt DA, Cheng H, Maleki SJ, Burks AW. Competitive inhibition ELISA for quantification of Ara h 1 and Ara h 2, the major allergens of peanuts. J AOAC Int. 2004;87(6):1492–7.

    PubMed  CAS  Google Scholar 

  53. Shreffler WG, Beyer K, Chu TH, Burks AW, Sampson HA. Microarray immunoassay: association of clinical history, in vitro IgE function, and heterogeneity of allergenic peanut epitopes. J Allergy Clin Immunol. 2004;113(4):776–82.

    Article  PubMed  CAS  Google Scholar 

  54. Shreffler WG, Lencer DA, Bardina L, Sampson HA. IgE and IgG4 epitope mapping by microarray immunoassay reveals the diversity of immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol. 2005;116(4):893–9.

    Article  PubMed  CAS  Google Scholar 

  55. Koppelman SJ, Wensing M, Ertmann M, Knulst AC, Knol EF. Relevance of Ara h1, Ara h2 and Ara h3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine release and intracutaneous testing: Ara h2 is the most important peanut allergen. Clin Exp Allergy. 2004;34(4):583–90.

    Article  PubMed  CAS  Google Scholar 

  56. Dreskin SC, Thomas GW, Dale SN, Heasley LE. Isoforms of Jun kinase are differentially expressed and activated in human monocyte/macrophage (THP-1) cells. J Immunol. 2001;166(9):5646–53.

    PubMed  CAS  Google Scholar 

  57. Valenta R, Almo S, Ball T, Dolecek C, Steinberger P, Laffer S, et al. The immunoglobulin E-allergen interaction: a target for therapy of type I allergic diseases. Int Arch Allergy Immunol. 1998;116(3):167–76.

    Article  PubMed  CAS  Google Scholar 

  58. Aalberse RC. Structural biology of allergens. J Allergy Clin Immunol. 2000;106(2):228–38.

    Article  PubMed  CAS  Google Scholar 

  59. Yunginger JW, Ahlstedt S, Eggleston PA, Homburger HA, Nelson HS, Ownby DR, et al. Quantitative IgE antibody assays in allergic diseases. J Allergy Clin Immunol. 2000;105(6 Pt 1):1077–84.

    Article  PubMed  CAS  Google Scholar 

  60. Caraballo L, Puerta L, Jimenez S, Martinez B, Mercado D, Avjiouglu A, et al. Cloning and IgE binding of a recombinant allergen from the mite Blomia tropicalis, homologous with fatty acid-binding proteins. Int Arch Allergy Immunol. 1997;112(4):341–7.

    Article  PubMed  CAS  Google Scholar 

  61. Sampson HA, Ho DG. Relationship between food-specific IgE concentrations and the risk of positive food challenges in children and adolescents. J Allergy Clin Immunol. 1997;100(4):444–51.

    Article  PubMed  CAS  Google Scholar 

  62. Dang TD, Tang M, Choo S, Licciardi PV, Koplin JJ, Martin PE, et al. Increasing the accuracy of peanut allergy diagnosis by using Ara h 2. J Allergy Clin Immunol. 2012;129(4):1056–63.

    Article  PubMed  CAS  Google Scholar 

  63. Gleich GJ, Larson JB, Jones RT, Baer H. Measurement of the potency of allergy extracts by their inhibitory capacities in the radioallergosorbent test. J Allergy Clin Immunol. 1974;53(3):158–69.

    Article  PubMed  CAS  Google Scholar 

  64. Stehbens WE. Koch’s postulates and experimental atherosclerosis. Med Hypotheses. 1991;35(4):288–92.

    Article  PubMed  CAS  Google Scholar 

  65. Inglis TJ. Principia aetiologica: taking causality beyond Koch’s postulates. J Med Microbiol. 2007;56(Pt 11):1419–22.

    Article  PubMed  Google Scholar 

  66. Fitch F, Lancki D, Havran W. Koch’s postulates and the molecular biology of T-cell function. Immunol Today. 1988;9(2):41–3.

    Article  PubMed  CAS  Google Scholar 

  67. Moxon ER. Microbes, molecules and man. The Mitchell lecture 1992. J R Coll Phys Lond. 1993;27(2):169–74.

    CAS  Google Scholar 

  68. de Groot H, van Swieten P, van Leeuwen J, Lind P, Aalberse RC. Monoclonal antibodies to the major feline allergen Fel d I. I. Serologic and biologic activity of affinity-purified Fel d I and of Fel d I-depleted extract. J Allergy Clin Immunol. 1988;82(5 Pt 1):778–86.

    PubMed  Google Scholar 

  69. Lombardero M, Quirce S, Duffort O, Barber D, Carpizo J, Chamorro MJ, et al. Monoclonal antibodies against Olea europaea major allergen: allergenic activity of affinity-purified allergen and depleted extract and development of a radioimmunoassay for the quantitation of the allergen. J Allergy Clin Immunol. 1992;89(4):884–94.

    Article  PubMed  CAS  Google Scholar 

  70. Urisu A, Ando H, Morita Y, Wada E, Yasaki T, Yamada K, et al. Allergenic activity of heated and ovomucoid-depleted egg white. J Allergy Clin Immunol. 1997;100(2):171–6.

    Article  PubMed  CAS  Google Scholar 

  71. van der Zee JS, van Swieten P, Jansen HM, Aalberse RC. Skin tests and histamine release with P1-depleted Dermatophagoides pteronyssinus body extracts and purified P1. J Allergy Clin Immunol. 1988;81(5 Pt 1):884–96.

    PubMed  Google Scholar 

  72. Norman PS, Winkenwerder WL, Lichtenstein LM. Immunotherapy of hay fever with ragweed antigen E: comparisons with whole pollen extract and placebos. J Allergy. 1968;42(2):93–108.

    Article  PubMed  CAS  Google Scholar 

  73. Witteman AM, Stapel SO, Perdok GJ, Sjamsoedin DH, Jansen HM, Aalberse RC, et al. The relationship between RAST and skin test results in patients with asthma or rhinitis: a quantitative study with purified major allergens. J Allergy Clin Immunol. 1996;97(1 Pt 1):16–25.

    Article  PubMed  CAS  Google Scholar 

  74. Wiegand TW, Williams PB, Dreskin SC, Jouvin MH, Kinet JP, Tasset D. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J Immunol. 1996;157(1):221–30.

    PubMed  CAS  Google Scholar 

  75. Dibbern DJ, Palmer G, Williams P, Bock S, Dreskin S. RBL cells expressiing Human FcεRI are a sensitive tool for exploring functional IgE-allergen interactions. J Immunol Methods. 2003;274:37–45.

    Article  PubMed  CAS  Google Scholar 

  76. Porterfield HS, Murray KS, Schlichting DG, Chen X, Hansen KC, Duncan MW, et al. Effector activity of peanut allergens: a critical role for Ara h 2, Ara h 6, and their variants. Clin Exp Allergy. 2009;39(7):1099–108.

    Article  PubMed  CAS  Google Scholar 

  77. Chen X, Zhuang Y, Wang Q, Moutsoglou D, Ruiz G, Yen SE, et al. Analysis of the effector activity of Ara h 2 and Ara h 6 by selective depletion from a crude peanut extract. J Immunol Methods. 2011;372(1–2):65–70.

    Article  PubMed  CAS  Google Scholar 

  78. McDermott RA, Porterfield HS, El-Mezayan R, Schlichting D, Hansen KC, Duncan MW, et al. Contribution of Ara h 2 to peanut-specific immunoglobulin E-mediated, cell activation. Clin Exp Allergy. 2007;37:752–63.

    Article  PubMed  CAS  Google Scholar 

  79. Ladics GS, van Bilsen JH, Brouwer HM, Vogel L, Vieths S, Knippels LM. Assessment of three human FcepsilonRI-transfected RBL cell-lines for identifying IgE induced degranulation utilizing peanut-allergic patient sera and peanut protein extract. Regul Toxicol Pharmacol. 2008;51(3):288–94.

    Article  PubMed  CAS  Google Scholar 

  80. Saito H, Ebisawa M, Tachimoto H, Shichijo M, Fukagawa K, Matsumoto K, et al. Selective growth of human mast cells induced by steel factor, IL-6, and prostaglandin E2 from cord blood mononuclear cells. J Immunol. 1996;157(1):343–50.

    PubMed  CAS  Google Scholar 

  81. Kepley CL, Youssef L, Andrews RP, Wilson BS, Oliver JM. Syk deficiency in nonreleaser basophils. J Allergy Clin Immunol. 1999;104(2 Pt 1):279–84.

    Article  PubMed  CAS  Google Scholar 

  82. Ebo DG, Hagendorens MM, Bridts CH, Schuerwegh AJ, De Clerck LS, Stevens WJ. In vitro allergy diagnosis: should we follow the flow? Clin Exp Allergy. 2004;34(3):332–9.

    Article  PubMed  CAS  Google Scholar 

  83. Budde IK, de Heer PG, Natter S, Mahler V, van der Zee JS, Valenta R, et al. Studies on the association between immunoglobulin E autoreactivity and immunoglobulin E-dependent histamine-releasing factors. Immunology. 2002;107(2):243–51.

    Article  PubMed  Google Scholar 

  84. Li XM, Serebrisky D, Lee SY, Huang CK, Bardina L, Schofield BH, et al. A murine model of peanut anaphylaxis: T- and B-cell responses to a major peanut allergen mimic human responses. J Allergy Clin Immunol. 2000;106(1 Pt 1):150–8.

    Article  PubMed  CAS  Google Scholar 

  85. Blanc F, Adel-Patient K, Drumare MF, Paty E, Wal JM, Bernard H. Capacity of purified peanut allergens to induce degranulation in a functional in vitro assay: Ara h 2 and Ara h 6 are the most efficient elicitors. Clin Exp Allergy. 2009;39(8):1277–85.

    Article  PubMed  CAS  Google Scholar 

  86. Peeters KA, Koppelman SJ, van Hoffen E, van der Tas CW, den Hartog Jager CF, Penninks AH, et al. Does skin prick test reactivity to purified allergens correlate with clinical severity of peanut allergy? Clin Exp Allergy. 2007;37(1):108–15.

    Article  PubMed  CAS  Google Scholar 

  87. Kulis M, Chen X, Lew J, Wang Q, Patel O, Murray KS et al. The 2S albumin allergens of Arachis hypogaea, Ara h 2 and Ara h 6, are the major elicitors of anaphylaxis and can effectively desensitize peanut-allergic mice. Clin Exp Allergy. 2012;42(2):326–36.

    Google Scholar 

  88. Krause S, Latendorf T, Schmidt H, Darcan-Nicolaisen Y, Reese G, Petersen A, et al. Peanut varieties with reduced Ara h 1 content indicating no reduced allergenicity. Mol Nutr Food Res. 2010;54(3):381–7.

    Article  PubMed  CAS  Google Scholar 

  89. McDermott RA, Porterfield HS, El-Mezayan R, Dreskin SC. Crude peanut extracts depleted of Ara h 2 retain the ability to cross-link IgE from peanut allergic subjects. J Allergy Clin Immuol. 2005;115(2):S37.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by an NIH grant, AI052164-01 and a supplemental ARRA grant from NIAID to Dr. Dreskin, and NIH National Center for Research Resources grant M01 RR000051 to the University of Colorado at Denver, and institutional funds.

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Dreskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuang, Y., Dreskin, S.C. Redefining the major peanut allergens. Immunol Res 55, 125–134 (2013). https://doi.org/10.1007/s12026-012-8355-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8355-x

Keywords

Navigation