Skip to main content
Log in

Low-dose CT in body-packers: delineation of body packs and radiation dose in a porcine model

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Purpose

To compare low-dose computed tomography (CT) with standard CT and conventional radiography (CR) regarding delineation of body packs and radiation dose.

Methods

Nine samples of illicit drugs including cocaine, heroin, and hashish were positioned in the rectum of a 121.5 kg pig cadaver. Each sample was scanned on a 64-row MDCT with 120 kV: one standard modulated pelvic protocol (STD), and without modulation at 80 mA (LD80), 30 mA (LD30), and 10 mA (LD10). Additionally, conventional abdominal anterior–posterior radiographs (77 kV and 106 ± 13 mA) were taken. Body pack characteristics (wrapping, content, shape) were rated independently by two radiologists and summarized to a delineation score from 0 to 9 with scores ≥6 representing sufficient delineation. Mean delineation scores were calculated for CR and CT protocols. These were additionally differentiated for readings in soft tissue (S), lung (L), user defined, variable window settings (V), and in cumulative window evaluation including all the other window settings (SLV). Effective doses were calculated (mSv).

Results

The CR delineation score was insufficient (3.1 ± 2.5; 2.4 ± 0.3 mSv). For CT, the SLV window setting performed best (p < 0.01). Its score significantly (p < 0.01) declined with decreasing effective radiation doses: STD (8.8 ± 0.5; 10.6 mSv), LD80 (8.2 ± 0.7; 2.6 mSv), LD30 (6.8 ± 1.3; 1.0 mSv), and LD10 (4.6 ± 1.9; 0.3 mSv). Thus, LD30 was the protocol using the lowest but sufficient dose. Moreover, for LD30 further differentiation between the particular window settings resulted in scores of 6.4 ± 1.3 (L), 6.3 ± 1.2 (V), and 3.1 ± 1.0 (S).

Conclusions

With appropriate window settings, low-dose CT at 30 mA allowed for sufficient body-pack delineation below the dose of CR, which itself performed insufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. United Nations Office on Drugs and Crime (UNODOC), Vienna. World drug report 2010. 2010. www.unodc.org/documents/wdr/WDR_2010/World_Drug_Report_2010_lo-res.pdf. Accessed 1 Feb 2013.

  2. Traub SJ, Hoffman RS, Nelson LS. Body packing—the internal concealment of illicit drugs. N Engl J Med. 2003;349:2519–26.

    Article  CAS  PubMed  Google Scholar 

  3. Norfolk GA. The fatal case of a cocaine body-stuffer and a literature review—towards evidence based management. J Forensic Leg Med. 2007;14:49–52.

    Article  CAS  PubMed  Google Scholar 

  4. Flach PM, Ross SG, Ampanozi G, et al. “Drug mules” as a radiological challenge: sensitivity and specificity in identifying internal cocaine in body packers, body pushers and body stuffers by computed tomography, plain radiography and Lodox. Eur J Radiol. 2012;81:2518–26.

    Article  PubMed  Google Scholar 

  5. Booker RJ, Smith JE, Rodger MP. Packers, pushers and stuffers-managing patients with concealed drugs in UK emergency departments: a clinical and medicolegal review. Emerg Med J. 2009;26:316–20.

    Article  CAS  PubMed  Google Scholar 

  6. Hergan K, Kofler K, Oser W. Drug smuggling by body packing: what radiologists should know about it. Eur Radiol. 2004;14:736–42.

    Article  PubMed  Google Scholar 

  7. Hassanian-Moghaddam H, Abolmasoumi Z. Consequence of body packing of illicit drugs. Arch Iran Med. 2007;10:20–3.

    PubMed  Google Scholar 

  8. Schaper A, Hofmann R, Bargain P, et al. Surgical treatment in cocaine body packers and body pushers. Int J Colorectal Dis. 2007;22:1531–5.

    Article  PubMed  Google Scholar 

  9. Yang RM, Li L, Feng J, et al. Heroin body packing: clearly discerning drug packets using CT. South Med J. 2009;102:470–5.

    Article  PubMed  Google Scholar 

  10. Poletti PA, Canel L, Becker CD, et al. Screening of illegal intracorporeal containers (“body packing”): is abdominal radiography sufficiently accurate? A comparative study with low-dose CT. Radiology. 2012;265:772–9.

    Article  PubMed  Google Scholar 

  11. Tsapaki V, Rehani M, Saini S. Radiation safety in abdominal computed tomography. Semin Ultrasound CT MR. 2010;31:29–38.

    Article  PubMed  Google Scholar 

  12. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.

    Article  PubMed  Google Scholar 

  13. Brenner DJ, Hall EJ. Computed tomography-an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  14. Jin DH, Lamberton GR, Broome DR, et al. Effect of reduced radiation CT protocols on the detection of renal calculi. Radiology. 2010;255:100–7.

    Article  PubMed  Google Scholar 

  15. Maurer MH, Niehues SM, Schnapauff D, et al. Low-dose computed tomography to detect body-packing in an animal model. Eur J Radiol. 2011;78:302–6.

    Article  CAS  PubMed  Google Scholar 

  16. Pache G, Einhaus D, Bulla S, et al. Low-dose computed tomography for the detection of cocaine body packs: clinical evaluation and legal issues. RoFo. 2012;184:122–9.

    Article  CAS  PubMed  Google Scholar 

  17. Poletti PA, Andereggen E, Rutschmann O, et al. Indications for low-dose CT in the emergency setting. Rev Med Suisse. 2009;5:1590–4.

    PubMed  Google Scholar 

  18. European guidelines on quality criteria for computed tomography 2000. Luxembourg: Office for Official Publications of the European Communities; 1999.

  19. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257:158–66.

    Article  PubMed  Google Scholar 

  20. Le Heron JC. Estimation of effective dose to the patient during medical x-ray examinations from measurements of the dose-area product. Phys Med Biol. 1992;37:2117–26.

    Article  PubMed  Google Scholar 

  21. Mettler FA Jr, Huda W, Yoshizumi TT, et al. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.

    Article  PubMed  Google Scholar 

  22. Haller O, Karlsson L, Nyman R. Can low-dose abdominal CT replace abdominal plain film in evaluation of acute abdominal pain? Ups J Med Sci. 2010;115:113–20.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Tartari S, Rizzati R, Righi R, et al. Low-dose unenhanced CT protocols according to individual body size for evaluating suspected renal colic: cumulative radiation exposures. Radiol Med. 2010;115:105–14.

    Article  CAS  PubMed  Google Scholar 

  24. Poletti PA, Platon A, Rutschmann OT, et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. Am J Roentgenol. 2007;188:927–33.

    Article  Google Scholar 

  25. Mueck FG, Korner M, Scherr MK, et al. Upgrade to iterative image reconstruction (IR) in abdominal MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR). RoFo. 2012;184:229–38.

    Article  CAS  PubMed  Google Scholar 

  26. Taheri MS, Hassanian-Moghaddam H, Birang S, et al. Swallowed opium packets: CT diagnosis. Abdom Imaging. 2008;33:262–6.

    Article  PubMed  Google Scholar 

  27. Udayasankar UK, Li J, Baumgarten DA, et al. Acute abdominal pain: value of non-contrast enhanced ultra-low-dose multi-detector row CT as a substitute for abdominal radiographs. Emerg Radiol. 2009;16:61–70.

    Article  PubMed  Google Scholar 

  28. Grimm JM, Wirth S, Reiser MF, Scherr M. Letter to the editor on the article by Pache G et al. Low-dose computed tomography for the detection of cocaine body packs: clinical evaluation and legal issues. RoFo. 2012;184:122–9.

    Article  Google Scholar 

  29. Ziegeler E, Grimm JM, Wirth S, et al. Computed tomography scout views vs. conventional radiography in body-packers—delineation of body-packs and radiation dose in a porcine model. Eur J Radiol. 2012;81:3883–9.

    Article  PubMed  Google Scholar 

  30. Sengupta A, Page P. Window manipulation in diagnosis of body packing using computed tomography. Emerg Radiol. 2008;15:203–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Scherr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherr, M.K., Peschel, O., Grimm, J.M. et al. Low-dose CT in body-packers: delineation of body packs and radiation dose in a porcine model. Forensic Sci Med Pathol 10, 170–178 (2014). https://doi.org/10.1007/s12024-013-9522-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-013-9522-7

Keywords

Navigation