Skip to main content
Log in

Review: Pharmacogenetic aspects of the effect of cytochrome P450 polymorphisms on serotonergic drug metabolism, response, interactions, and adverse effects

  • Review
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

The field of pharmacogenetics contains a wealth of potential for the enhancement of clinical practice by providing a more effective match between patient and drug, consequently reducing the probability of an adverse drug reaction. Although a relatively novel concept in the forensic context, pharmacogenetics has the capability to assist in the interpretation of drug related deaths, particularly in unintentional drug poisonings where the cause of death remains unclear. However, the complex pharmacology of the drugs when subjected to genetic variations in metabolism makes interpretation of the expected response and adverse events difficult. Many possess multiple metabolic pathways, narrow therapeutic indices and active metabolites or enantiomers which may be eliminated via different pathways to the parent drug. A number of these drugs, which are metabolised primarily by the CYP450 system, are also associated with serotonin syndrome, or serotonin toxicity, especially when used concomitantly with other serotonin active drugs which rely on the same metabolic pathways for drug elimination. A comprehensive understanding of polymorphic drug metabolism and its expected outcomes is therefore essential when interpreting the involvement of drugs in adverse reactions. This review examines the genetically variable CYP450-mediated metabolism of a number of serotonin-active drugs that are often implicated in cases of serotonin toxicity, to assess the impact of pharmacogenetics on drug metabolism, response, interactions and adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Runciman WB, Roughead EE, Semple SJ, Adams RJ. Adverse drug events and medication errors in Australia. Int J Qual Health Care. 2003;15(Suppl 1):i49–59.

    PubMed  Google Scholar 

  2. Lazarou J, Pomeranz B, Corey P. Incidence of adverse drug reactions in hospitalised patients: a meta-analysis of prospective studies. JAMA. 1998;279:1200–5.

    PubMed  CAS  Google Scholar 

  3. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, Farrar K, Park BK, Breckenridge AM. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15–9.

    PubMed  Google Scholar 

  4. Druzgala P. A fresh approach to adverse drug reactions. Eur Pharm Rev Drug Saf. 2004:85–8.

  5. Evans WE, McLeod HL. Pharmacogenomics—drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–49.

    PubMed  CAS  Google Scholar 

  6. Garcia-Quetglas E, Azanza JR, Sadaba B, Munoz MJ, Gil I, Campanero MA. Pharmacokinetics of tramadol enantiomers and their respective phase i metabolites in relation to cyp2d6 phenotype. Pharmacol Res. 2007;55(2):122–30.

    PubMed  CAS  Google Scholar 

  7. Kollek R, van Aken J, Feuerstein G, Schmedders M. Pharmacogenetics, adverse drug reactions and public health. Community Genet. 2006;9(1):50–4.

    PubMed  Google Scholar 

  8. McKinnon RA, Evans AM. Cytochrome p450. 3. Clinically significant drug interactions. Aust J Hosp Pharm. 2000;30(4):146–9.

    CAS  Google Scholar 

  9. McKinnon RA. Cytochrome p450. 1. Multiplicity and function. Aust J Hosp Pharm. 2000;30:54–6.

    CAS  Google Scholar 

  10. McKinnon RAE. A.M. Cytochrome p450. 2. Pharmacogenetics. Aust J Hosp Pharm. 2000;30:102–5.

    CAS  Google Scholar 

  11. Weinshilboum R. Inheritance and drug response. N Engl J Med. 2003;348(6):529–37.

    PubMed  Google Scholar 

  12. Brosen K. The relationship between imipramine metabolism and the sparteine oxidation polymorphism (thesis). Dan Med Bull. 1988;35:460–8.

    PubMed  CAS  Google Scholar 

  13. Rutter JL. Symbiotic relationship of pharmacogenetics and drugs of abuse. AAPS J. 2006;8(1):E174–84.

    PubMed  CAS  Google Scholar 

  14. Shuster L. Pharmacogenetics of drugs of abuse. Ann N Y Acad Sci. 1989;562:56–73.

    PubMed  CAS  Google Scholar 

  15. Wolf CR, Smith G. Pharmacogenetics. Br Med Bull. 1999;55(2):366–86.

    PubMed  CAS  Google Scholar 

  16. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome p450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther. 2007;116(3):496–526.

    PubMed  CAS  Google Scholar 

  17. Shelling AN, Ferguson LR. Genetic variation in human disease and a new role for copy number variants. Mutat Res. 2007;622(1–2):33–41.

    PubMed  CAS  Google Scholar 

  18. Wong SH. Pharmacogenomics and variation in drug therapy report 2005. 2005.

  19. Koski A. Interpretation of postmortem toxicology results: pharmacogenetics and drug-alcohol interaction. PhD Thesis. Helsinki, Finland: University of Helsinki; 2005.

  20. Danielson PB. The cytochrome p450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.

    PubMed  CAS  Google Scholar 

  21. Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58(3):521–90.

    PubMed  CAS  Google Scholar 

  22. Paar WD, Frankus P, Dengler HJ. The metabolism of tramadol by human liver microsomes. Clin Investig. 1992;70(8):708–10.

    PubMed  CAS  Google Scholar 

  23. Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome p450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.

    PubMed  CAS  Google Scholar 

  24. Ray WA, Griffin MR, Shorr RI. Adverse drug reactions and the elderly. Health Aff (Millwood). 1990;9(3):114–22.

    CAS  Google Scholar 

  25. Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet. 2000;356(9242):1667–71.

    PubMed  CAS  Google Scholar 

  26. Shi R, Winecker RE, Lo SF, Schneider RJ, Kin M, Schur BC, et al. Pharmacogenomics for clinical and forensic toxicology—an adjunct for interpretation of drug toxicity. Pharmacogenomics and proteomics: enabling the practice of personalized medicine. Tertiary pharmacogenomics for clinical and forensic toxicology—an adjunct for interpretation of drug toxicity. Washington DC, USA: AACC Press; 2006.

  27. Guengerich FP. Cytochrome p450s and other enzymes in drug metabolism and toxicity. AAPS J. 2006;8(1):E101–11.

    PubMed  CAS  Google Scholar 

  28. Rushmore TH, Kong AN. Pharmacogenomics, regulation and signaling pathways of phase i and ii drug metabolizing enzymes. Curr Drug Metab. 2002;3(5):481–90.

    PubMed  CAS  Google Scholar 

  29. Sweeney BP. Pharmacogenomics: the genetic basis for variability in drug response. Cambridge University Press: Recent advances in anaesthesia and intensive care; 2005.

  30. Wester K, Jonsson AK, Spigset O, Druid H, Hagg S. Incidence of fatal adverse drug reactions: a population based study. Br J Clin Pharmacol. 2008;65(4):573–9.

    PubMed  Google Scholar 

  31. Kaneda Y, Kawamura I, Fujii A, Ohmori T. Serotonin syndrome—‘potential’ role of the cyp2d6 genetic polymorphism in asians. Int J Neuropsychopharmacol. 2002;5(1):105–6.

    PubMed  CAS  Google Scholar 

  32. Blanco JG, Harrison PL, Evans WE, Relling MV. Human cytochrome p450 maximal activities in pediatric versus adult liver. Drug Metab Dispos. 2000;28(4):379–82.

    PubMed  CAS  Google Scholar 

  33. Anzenbacher P, Anzenbacherova E. Cytochromes p450 and metabolism of xenobiotics. Cell Mol Life Sci. 2001;58(5–6):737–47.

    PubMed  CAS  Google Scholar 

  34. Daly AK. Pharmacogenetics of the cytochromes p450. Curr Top Med Chem. 2004;4(16):1733–44.

    PubMed  CAS  Google Scholar 

  35. Daly AK, Cholerton S, Gregory W, Idle JR. Metabolic polymorphisms. Pharmacol Ther. 1993;57(2–3):129–60.

    PubMed  CAS  Google Scholar 

  36. Faber MS, Jetter A, Fuhr U. Assessment of cyp1a2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol. 2005;97(3):125–34.

    PubMed  CAS  Google Scholar 

  37. Druid H, Holmgren P, Carlsson B, Ahlner J. Cytochrome p450 2d6 (cyp2d6) genotyping on postmortem blood as a supplementary tool for interpretation of forensic toxicological results. Forensic Sci Int. 1999;99(1):25–34.

    PubMed  CAS  Google Scholar 

  38. Cascorbi I. Pharmacogenetics of cytochrome p4502d6: genetic background and clinical implication. Eur J Clin Invest. 2003;33(Suppl 2):17–22.

    PubMed  CAS  Google Scholar 

  39. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A. Molecular genetics of cyp2d6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol. 2002;53(2):111–22.

    PubMed  CAS  Google Scholar 

  40. Stipp D. A DNA tragedy. Fortune. 2000;142(10):170–4, 8, 80 passim.

    Google Scholar 

  41. Arvanitidis K, Ragia G, Iordanidou M, Kyriaki S, Xanthi A, Tavridou A, et al. Genetic polymorphisms of drug-metabolizing enzymes cyp2d6, cyp2c9, cyp2c19 and cyp3a5 in the Greek population. Fundam Clin Pharmacol. 2007;21(4):419–26.

    PubMed  CAS  Google Scholar 

  42. Ma JD, Nafziger AN, Bertino JSJ. Genetic polymorphisms of cytochrome p450 enzymes and the effect on interindividual, pharmacokinetic variability in extensive metabolizers. J Clin Pharmacol. 2004;44(5):447–56.

    PubMed  CAS  Google Scholar 

  43. Miners JO, Birkett DJ. Cytochrome p4502c9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45(6):525–38.

    PubMed  CAS  Google Scholar 

  44. Liu ZQ, Cheng ZN, Huang SL, Chen XP, Ou-Yang DS, Jiang CH, et al. Effect of the cyp2c19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol. 2001;52(1):96–9.

    PubMed  CAS  Google Scholar 

  45. Wang JH, Liu ZQ, Wang W, Chen XP, Shu Y, He N, et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of cyp2c19. Clin Pharmacol Ther. 2001;70(1):42–7.

    PubMed  CAS  Google Scholar 

  46. Yu BN, Chen GL, He N, Ouyang DS, Chen XP, Liu ZQ, et al. Pharmacokinetics of citalopram in relation to genetic polymorphism of cyp2c19. Drug Metab Dispos. 2003;31(10):1255–9.

    PubMed  CAS  Google Scholar 

  47. Bramness JG, Skurtveit S, Gulliksen M, Breilid H, Steen VM, Morland J. The cyp2c19 genotype and the use of oral contraceptives influence the pharmacokinetics of carisoprodol in healthy human subjects. Eur J Clin Pharmacol. 2005;61(7):499–506.

    PubMed  CAS  Google Scholar 

  48. Keshava C, McCanlies EC, Weston A. Cyp3a4 polymorphisms—potential risk factors for breast and prostate cancer: a huge review. Am J Epidemiol. 2004;160(9):825–41.

    PubMed  Google Scholar 

  49. Burk O, Wojnowski L. Cytochrome p450 3a and their regulation. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):105–24.

    PubMed  CAS  Google Scholar 

  50. Bailey DG, Malcolm J, Arnold O, Spence JD. Grapefruit juice-drug interactions. Br J Clin Pharmacol. 1998;46(2):101–10.

    PubMed  CAS  Google Scholar 

  51. van Schaik RH, de Wildt SN, Brosens R, van Fessem M, van den Anker JN, Lindemans J. The cyp3a4*3 allele: is it really rare? Clin Chem. 2001;47(6):1104–6.

    PubMed  Google Scholar 

  52. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human cyp3a-mediated metabolism. Adv Drug Deliv Rev. 2002;54(10):1271–94.

    PubMed  CAS  Google Scholar 

  53. Zanger UM, Raimundo S, Eichelbaum M. Cytochrome p450 2d6: overview and update on pharmacology, genetics, biochemistry. Naunyn Schmiedebergs Arch Pharmacol. 2004;369(1):23–37.

    PubMed  CAS  Google Scholar 

  54. Flockhart DA, Rae JM. Cytochrome p450 3a pharmacogenetics: the road that needs traveled. Pharmacogenomics J. 2003;3(1):3–5.

    PubMed  CAS  Google Scholar 

  55. Bernard SA, Bruera E. Drug interactions in palliative care. J Clin Oncol. 2000;18(8):1780–99.

    PubMed  CAS  Google Scholar 

  56. Weschules DJ, Bain KT, Richeimer S. Actual and potential drug interactions associated with methadone. Pain Med. 2008;9(3):315–44.

    PubMed  Google Scholar 

  57. Armstrong SC, Cozza KL, Sandson NB. Six patterns of drug–drug interactions. Psychosomatics. 2003;44(3):255–8.

    PubMed  Google Scholar 

  58. Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome p450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997;44(2):190–4.

    PubMed  CAS  Google Scholar 

  59. Spina E, Scordo MG, D’Arrigo C. Metabolic drug interactions with new psychotropic agents. Fundam Clin Pharmacol. 2003;17(5):517–38.

    PubMed  CAS  Google Scholar 

  60. Ring BJ, Eckstein JA, Gillespie JS, Binkley SN, VandenBranden M, Wrighton SA. Identification of the human cytochromes p450 responsible for in vitro formation of r- and s-norfluoxetine. J Pharmacol Exp Ther. 2001;297(3):1044–50.

    PubMed  CAS  Google Scholar 

  61. Drummer OH, Odell M. The forensic pharmacology of drugs of abuse. London: Arnold; 2001.

  62. Shapiro RE, Tepper SJ. The serotonin syndrome, triptans, and the potential for drug-drug interactions. Headache. 2007;47(2):266–9.

    PubMed  Google Scholar 

  63. Ener RA, Meglathery SB, Van Decker WA, Gallagher RM. Serotonin syndrome and other serotonergic disorders. Pain Med. 2003;4(1):63–74.

    PubMed  Google Scholar 

  64. Suchowersky O, deVries JD. Interaction of fluoxetine and selegiline. Can J Psychiatry. 1990;35(6):571–2.

    PubMed  CAS  Google Scholar 

  65. Lane R, Baldwin D. Selective serotonin reuptake inhibitor-induced serotonin syndrome: review. J Clin Psychopharmacol. 1997;17(3):208–21.

    PubMed  CAS  Google Scholar 

  66. Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med. 2005;352(11):1112–20.

    PubMed  CAS  Google Scholar 

  67. Dunkley EJ, Isbister GK, Sibbritt D, Dawson AH, Whyte IM. The hunter serotonin toxicity criteria: simple and accurate diagnostic decision rules for serotonin toxicity. QJM. 2003;96(9):635–42.

    PubMed  CAS  Google Scholar 

  68. Drummer OH. Postmortem toxicology of drugs of abuse. Forensic Sci Int. 2004;142(2–3):101–13.

    PubMed  CAS  Google Scholar 

  69. Silins E, Copeland J, Dillon P. Qualitative review of serotonin syndrome, ecstasy (mdma) and the use of other serotonergic substances: hierarchy of risk. Aust N Z J Psychiatry. 2007;41:649–55.

    PubMed  Google Scholar 

  70. Copeland J, Dillon P, Gascoigne M. Ecstasy and the concomitant use of pharmaceuticals. Addict Behav. 2006;31(2):367–70. doi:10.1016/j.addbeh.2005.05.025.

    PubMed  Google Scholar 

  71. Kam PC, Chang GW. Selective serotonin reuptake inhibitors. Pharmacology and clinical implications in anaesthesia and critical care medicine. Anaesthesia. 1997;52(10):982–8.

    PubMed  CAS  Google Scholar 

  72. Vaswani M, Linda FK, Ramesh S. Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(1):85–102.

    PubMed  CAS  Google Scholar 

  73. Mandrioli R, Forti GC, Raggi MA. Fluoxetine metabolism and pharmacological interactions: the role of cytochrome p450. Curr Drug Metab. 2006;7(2):127–33.

    PubMed  CAS  Google Scholar 

  74. Hiemke C, Hartter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther. 2000;85(1):11–28.

    PubMed  CAS  Google Scholar 

  75. Rahola JG. Antidepressants: pharmacological profile and clinical consequences. Int J Psyc Clin Pract. 2001;5(1):19–28.

    Google Scholar 

  76. Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. Citalopram—a review of pharmacological and clinical effects. J Psychiatry Neurosci. 2000;25(3):241–54.

    PubMed  CAS  Google Scholar 

  77. Llorca PM, Brousse G, Schwan R. Escitalopram for treatment of major depressive disorder in adults. Encephale. 2005;31(4 Pt 1):490–501.

    PubMed  CAS  Google Scholar 

  78. Baumann P, Rochat B. Comparative pharmacokinetics of selective serotonin reuptake inhibitors: a look behind the mirror. Int Clin Psychopharmacol. 1995;10(Suppl 1):15–21.

    PubMed  Google Scholar 

  79. Baker GB, Prior TI. Stereochemistry and drug efficacy and development: relevance of chirality to antidepressant and antipsychotic drugs. Ann Med. 2002;34(7–8):537–43.

    PubMed  CAS  Google Scholar 

  80. Carlsson B. From achiral to chiral analysis of citalopram. Sweden: Linkoping University; 2003.

    Google Scholar 

  81. Kugelberg FC, Jones AW. Interpreting results of ethanol analysis in postmortem specimens: a review of the literature. Forensic Sci Int. 2007;165(1):10–29.

    PubMed  CAS  Google Scholar 

  82. Green AR, Mechan AO, Elliott JM, O’Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (mdma, “ecstasy”). Pharmacol Rev. 2003;55(3):463–508.

    PubMed  CAS  Google Scholar 

  83. Carrasco JL, Sandner C. Clinical effects of pharmacological variations in selective serotonin reuptake inhibitors: an overview. Int J Clin Pract. 2005;59(12):1428–34.

    PubMed  CAS  Google Scholar 

  84. Gillman PK. Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth. 2005;95(4):434–41.

    PubMed  CAS  Google Scholar 

  85. Harvey AT, Burke M. Comment on: the serotonin syndrome associated with paroxetine, an over-the-counter cold remedy, and vascular disease. Am J Emerg Med. 1995;13(5):605–7.

    PubMed  CAS  Google Scholar 

  86. Skop BP, Finkelstein JA, Mareth TR, Magoon MR, Brown TM. The serotonin syndrome associated with paroxetine, an over-the-counter cold remedy, and vascular disease. Am J Emerg Med. 1994;12(6):642–4.

    PubMed  CAS  Google Scholar 

  87. Westenberg HG, Sandner C. Tolerability and safety of fluvoxamine and other antidepressants. Int J Clin Pract. 2006;60(4):482–91. doi:10.1111/j.1368-5031.2006.00865.x.

    PubMed  CAS  Google Scholar 

  88. Miura M, Ohkubo T. Identification of human cytochrome p450 enzymes involved in the major metabolic pathway of fluvoxamine. Xenobiotica. 2007;37(2):169–79.

    PubMed  CAS  Google Scholar 

  89. Burke WJ, Kratochvil CJ. Stereoisomers in psychiatry: the case of escitalopram. Prim Care Companion J Clin Psychiatry. 2002;4(1):20–4.

    PubMed  Google Scholar 

  90. Droll K, Bruce-Mensah K, Otton SV, Gaedigk A, Sellers EM, Tyndale RF. Comparison of three cyp2d6 probe substrates and genotype in ghanaians, chinese and caucasians. Pharmacogenetics. 1998;8(4):325–33.

    PubMed  CAS  Google Scholar 

  91. Mayersohn M, Guentert TW. Clinical pharmacokinetics of the monoamine oxidase-a inhibitor moclobemide. Clin Pharmacokinet. 1995;29(5):292–332.

    PubMed  CAS  Google Scholar 

  92. Giroud C, Horisberger B, Eap C, Augsburger M, Menetrey A, Baumann P, et al. Death following acute poisoning by moclobemide. Forensic Sci Int. 2004;140(1):101–7. doi:10.1016/j.forsciint.2003.10.021.

    PubMed  CAS  Google Scholar 

  93. Yamada M, Yasuhara H. Clinical pharmacology of Mao inhibitors: safety and future. Neurotoxicology. 2004;25(1–2):215–21.

    PubMed  CAS  Google Scholar 

  94. Chan BS, Graudins A, Whyte IM, Dawson AH, Braitberg G, Duggin GG. Serotonin syndrome resulting from drug interactions. Med J Aust. 1998;169(10):523–5.

    PubMed  CAS  Google Scholar 

  95. Azzaro AJ, Ziemniak J, Kemper E, Campbell BJ, VanDenBerg C. Selegiline transdermal system: an examination of the potential for cyp450-dependent pharmacokinetic interactions with 3 psychotropic medications. J Clin Pharmacol. 2007;47(2):146–58.

    PubMed  CAS  Google Scholar 

  96. Taavitsainen P, Anttila M, Nyman L, Karnani H, Salonen JS, Pelkonen O. Selegiline metabolism and cytochrome p450 enzymes: in vitro study in human liver microsomes. Pharmacol Toxicol. 2000;86(5):215–21.

    PubMed  CAS  Google Scholar 

  97. Yasar S, Goldberg JP, Goldberg SR. Are metabolites of l-deprenyl (selegiline) useful or harmful? Indications from preclinical research. J Neural Transm Suppl. 1996;48:61–73.

    PubMed  CAS  Google Scholar 

  98. Shin HS. Metabolism of selegiline in humans. Identification, excretion, and stereochemistry of urine metabolites. Drug Metab Dispos. 1997;25(6):657–62.

    PubMed  CAS  Google Scholar 

  99. Hasegawa M, Matsubara K, Fukushima S, Maseda C, Uezono T, Kimura K. Stereoselective analyses of selegiline metabolites: possible urinary markers for selegiline therapy. Forensic Sci Int. 1999;101(2):95–106.

    PubMed  CAS  Google Scholar 

  100. Toyama SC, Iacono RP. Is it safe to combine a selective serotonin reuptake inhibitor with selegiline? Ann Pharmacother. 1994;28(3):405–6.

    PubMed  CAS  Google Scholar 

  101. Rogers JF, Nafziger AN, Bertino JSJ. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome p450-metabolized drugs. Am J Med. 2002;113(9):746–50.

    PubMed  CAS  Google Scholar 

  102. Gillman K. Venlafaxine-lithium toxicity: suitability for use in the elderly. J Clin Pharm Ther. 2007;32(5):529–31.

    PubMed  CAS  Google Scholar 

  103. Baker GB, Prior TI, Coutts RT. Chirality and drugs used to treat psychiatric disorders. J Psychiatry Neurosci. 2002;27(6):401–3.

    PubMed  Google Scholar 

  104. Maguire KP, Burrows GD, Norman TR, Scoggins BA. Metabolism and pharmacokinetics of dothiepin. Br J Clin Pharmacol. 1981;12(3):405–9.

    PubMed  CAS  Google Scholar 

  105. Williams DA, Foye WO, Lemke TL. Foye’s principles of medicinal chemistry. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2002.

    Google Scholar 

  106. Keller T, Schneider A, Tutsch-Bauer E. Fatal intoxication due to dothiepin. Forensic Sci Int. 2000;109(2):159–66.

    PubMed  CAS  Google Scholar 

  107. Heal D, Cheetham S, Martin K, Browning J, Luscombe G, Buckett R. Comparitive pharmacology of dothiepin, its metabolites, and other antidepressant drugs. Drug Dev Res. 1992;27:121–35.

    CAS  Google Scholar 

  108. Lancaster SG, Gonzalez JP. Dothiepin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs. 1989;38(1):123–47.

    PubMed  CAS  Google Scholar 

  109. Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151(6):737–48.

    PubMed  CAS  Google Scholar 

  110. Hartter S, Tybring G, Friedberg T, Weigmann H, Hiemke C. The n-demethylation of the doxepin isomers is mainly catalyzed by the polymorphic cyp2c19. Pharm Res. 2002;19(7):1034–7.

    PubMed  Google Scholar 

  111. Yan JH, Hubbard JW, McKay G, Midha KK. Stereoselective in vivo and in vitro studies on the metabolism of doxepin and n-desmethyldoxepin. Xenobiotica. 1997;27(12):1245–57.

    PubMed  CAS  Google Scholar 

  112. Haritos VS, Ghabrial H, Ahokas JT, Ching MS. Role of cytochrome p450 2d6 (cyp2d6) in the stereospecific metabolism of e- and z-doxepin. Pharmacogenetics. 2000;10(7):591–603.

    PubMed  CAS  Google Scholar 

  113. Gutierrez MA, Stimmel GL, Aiso JY. Venlafaxine: a 2003 update. Clin Ther. 2003;25(8):2138–54.

    PubMed  CAS  Google Scholar 

  114. McAlpine DE, O’Kane DJ, Black JL, Mrazek DA. Cytochrome p450 2d6 genotype variation and venlafaxine dosage. Mayo Clin Proc. 2007;82(9):1065–8.

    PubMed  CAS  Google Scholar 

  115. Eap CB, Lessard E, Baumann P, Brawand-Amey M, Yessine MA, O’Hara G, et al. Role of cyp2d6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics. 2003;13(1):39–47.

    PubMed  CAS  Google Scholar 

  116. Tatsumi M, Groshan K, Blakely RD, Richelson E. Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997;340(2–3):249–58.

    PubMed  CAS  Google Scholar 

  117. Davis R, Whittington R, Bryson HM. Nefazodone: a review of its pharmacology and clinical efficacy in the management of major depression. Drugs. 1997;53(4):608–36.

    PubMed  CAS  Google Scholar 

  118. Lantz MS, Buchalter E, Giambanco V. St. John’s wort and antidepressant drug interactions in the elderly. J Geriatr Psychiatry Neurol. 1999;12(1):7–10.

    PubMed  CAS  Google Scholar 

  119. Rathi SS, Grover, JK, Vats, V. Nefazodone—a new anti-depressant. JIOM. 2000;22(1&2).

  120. Marino MR, Langenbacher M, Ulderman HD. Interaction of nefazodone and fluoxetine. Clin Pharmacol Ther. 1996;59:180.

    Google Scholar 

  121. Rotzinger S, Fang J, Baker GB. Trazodone is metabolized to m-chlorophenylpiperazine by cyp3a4 from human sources. Drug Metab Dispos. 1998;26(6):572–5.

    PubMed  CAS  Google Scholar 

  122. Yasui N, Otani K, Kaneko S, Ohkubo T, Osanai T, Ishida M, et al. Inhibition of trazodone metabolism by thioridazine in humans. Ther Drug Monit. 1995;17(4):333–5.

    PubMed  CAS  Google Scholar 

  123. Smith KL-H, F. Association of desyrel (trazodone) with drug interactions with medications that alter cyp3a4 metabolism. Canada 2004.

  124. Ernst E, Rand JI, Barnes J, Stevinson C. Adverse effects profile of the herbal antidepressant st. John’s wort (hypericum perforatum l.). Eur J Clin Pharmacol. 1998;54(8):589–94.

    PubMed  CAS  Google Scholar 

  125. Dannawi M. Possible serotonin syndrome after combination of buspirone and St John’s Wort. J Psychopharmacol. 2002;16(4):401.

    PubMed  Google Scholar 

  126. Fugh-Berman A. Herb-drug interactions. Lancet. 2000;355(9198):134–8.

    PubMed  CAS  Google Scholar 

  127. Kalant H. The pharmacology and toxicology of “ecstasy” (mdma) and related drugs. CMAJ. 2001;165(7):917–28.

    PubMed  CAS  Google Scholar 

  128. Shannon M. Methylenedioxymethamphetamine (mdma, “ecstasy”). Pediatr Emerg Care. 2000;16(5):377–80.

    PubMed  CAS  Google Scholar 

  129. Albertson TE, Derlet RW, Van Hoozen BE. Methamphetamine and the expanding complications of amphetamines. West J Med. 1999;170(4):214–9.

    PubMed  CAS  Google Scholar 

  130. Musshoff F. Illegal or legitimate use? Precursor compounds to amphetamine and methamphetamine. Drug Metab Rev. 2000;32(1):15–44.

    PubMed  CAS  Google Scholar 

  131. Ramamoorthy Y, Yu AM, Suh N, Haining RL, Tyndale RF, Sellers EM. Reduced (±)-3,4-methylenedioxymethamphetamine (“ecstasy”) metabolism with cytochrome p450 2d6 inhibitors and pharmacogenetic variants in vitro. Biochem Pharmacol. 2002;63(12):2111–9.

    PubMed  CAS  Google Scholar 

  132. de la Torre R, Farre M, Ortuno J, Mas M, Brenneisen R, Roset PN, et al. Non-linear pharmacokinetics of mdma (‘ecstasy’) in humans. Br J Clin Pharmacol. 2000;49(2):104–9.

    PubMed  Google Scholar 

  133. Pizarro N, Farre M, Pujadas M, Peiro AM, Roset PN, Joglar J, et al. Stereochemical analysis of 3,4-methylenedioxymethamphetamine and its main metabolites in human samples including the catechol-type metabolite (3,4-dihydroxymethamphetamine). Drug Metab Dispos. 2004;32(9):1001–7.

    PubMed  CAS  Google Scholar 

  134. Fallon JK, Kicman AT, Henry JA, Milligan PJ, Cowan DA, Hutt AJ. Stereospecific analysis and enantiomeric disposition of 3,4-methylenedioxymethamphetamine (ecstasy) in humans. Clin Chem. 1999;45(7):1058–69.

    PubMed  CAS  Google Scholar 

  135. Oesterheld JR, Armstrong SC, Cozza KL. Ecstasy: pharmacodynamic and pharmacokinetic interactions. Psychosomatics. 2004;45(1):84–7.

    PubMed  CAS  Google Scholar 

  136. Dowling GP, McDonough ET III, Bost RO. ‘Eve’ and ‘ecstasy’ A. report of five deaths associated with the use of mdea and mdma. JAMA. 1987;257(12):1615–7.

    PubMed  CAS  Google Scholar 

  137. Henry JA, Jeffreys KJ, Dawling S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet. 1992;340(8816):384–7.

    PubMed  CAS  Google Scholar 

  138. Dostalek M, Jurica J, Pistovcakova J, Hanesova M, Tomandl J, Linhart I, et al. Effect of methamphetamine on cytochrome p450 activity. Xenobiotica. 2007;37(12):1355–66.

    PubMed  CAS  Google Scholar 

  139. Peters FT, Samyn N, Wahl M, Kraemer T, De Boeck G, Maurer HH. Concentrations and ratios of amphetamine, methamphetamine, mda, mdma, and mdea enantiomers determined in plasma samples from clinical toxicology and driving under the influence of drugs cases by gc-nici-ms. J Anal Toxicol. 2003;27(8):552–9.

    PubMed  CAS  Google Scholar 

  140. Chahl LA. Opioids—mechanism of action. Aust Prescr. 1996;19:63–5.

    Google Scholar 

  141. Matthiesen T, Wohrmann T, Coogan TP, Uragg H. The experimental toxicology of tramadol: an overview. Toxicol Lett. 1998;95(1):63–71.

    PubMed  CAS  Google Scholar 

  142. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879–923.

    PubMed  CAS  Google Scholar 

  143. Lotsch J. Opioid metabolites. J Pain Symptom Manage. 2005;29(5 Suppl):S10–24.

    PubMed  Google Scholar 

  144. Lewis KS, Han NH. Tramadol: a new centrally acting analgesic. Am J Health Syst Pharm. 1997;54(6):643–52.

    PubMed  CAS  Google Scholar 

  145. Shipton EA. Tramadol—present and future. Anaesth Intensive Care. 2000;28(4):363–74.

    PubMed  CAS  Google Scholar 

  146. Tirkkonen T, Laine K. Drug interactions with the potential to prevent prodrug activation as a common source of irrational prescribing in hospital inpatients. Clin Pharmacol Ther. 2004;76(6):639–47.

    PubMed  CAS  Google Scholar 

  147. Mehvar R, Elliott K, Parasrampuria R, Eradiri O. Stereospecific high-performance liquid chromatographic analysis of tramadol and its o-demethylated (m1) and n, o-demethylated (m5) metabolites in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;852(1–2):152–9.

    PubMed  CAS  Google Scholar 

  148. Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brosen K. Paroxetine, a cytochrome p450 2d6 inhibitor, diminishes the stereoselective o-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther. 2005;77(4):312–23.

    PubMed  CAS  Google Scholar 

  149. Levo A, Koski A, Ojanpera I, Vuori E, Sajantila A. Post-mortem snp analysis of cyp2d6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int. 2003;135(1):9–15.

    PubMed  CAS  Google Scholar 

  150. Pedersen RS, Damkier P, Brosen K. Tramadol as a new probe for cytochrome p450 2d6 phenotyping: a population study. Clin Pharmacol Ther. 2005;77(6):458–67.

    PubMed  CAS  Google Scholar 

  151. Michalalkas JR, Colvill JD, Coller JK, James H, Farquharson AL, Lopatko OV, Somogyi AA, White JM, editors. Comparison of tramadol metabolism in methadone and buprenorphine maintenance patients. SEAWP-RMP, ASCEPT, HBPRCA; 2007 Dec 2–6, 2007; Adelaide, Australia.

  152. Mather LE, Cousins MJ. Pharmacology of opioids. Part 2. Clinical aspects. Med J Aust. 1986;144(9):475–81.

    PubMed  CAS  Google Scholar 

  153. Begre S, von Bardeleben U, Ladewig D, Jaquet-Rochat S, Cosendai-Savary L, Golay KP, et al. Paroxetine increases steady-state concentrations of (r)-methadone in cyp2d6 extensive but not poor metabolizers. J Clin Psychopharmacol. 2002;22(2):211–5.

    PubMed  CAS  Google Scholar 

  154. Eap CB, Bertschy G, Powell K, Baumann P. Fluvoxamine and fluoxetine do not interact in the same way with the metabolism of the enantiomers of methadone. J Clin Psychopharmacol. 1997;17(2):113–7.

    PubMed  CAS  Google Scholar 

  155. Koski A, Sistonen J, Ojanpera I, Gergov M, Vuori E, Sajantila A. Cyp2d6 and cyp2c19 genotypes and amitriptyline metabolite ratios in a series of medicolegal autopsies. Forensic Sci Int. 2006;158(2–3):177–83.

    PubMed  CAS  Google Scholar 

  156. Chevalier D, Cauffiez C, Allorge D, Lo-Guidice JM, Lhermitte M, Lafitte JJ, et al. Five novel natural allelic variants-951a>c, 1042g>a (d348n), 1156a>t (i386f), 1217g>a (c406y) and 1291c>t (c431y)-of the human cyp1a2 gene in a french caucasian population. Hum Mutat. 2001;17(4):355–6.

    Google Scholar 

  157. Zhou H, Josephy PD, Kim D, Guengerich FP. Functional characterization of four allelic variants of human cytochrome p450 1a2. Arch Biochem Biophys. 2004;422(1):23–30.

    PubMed  CAS  Google Scholar 

  158. Bijl D. The serotonin syndrome. Neth J Med. 2004;62:309–14.

    PubMed  CAS  Google Scholar 

  159. Musshoff F, Madea B. Fatality due to ingestion of tramadol alone. Forensic Sci Int. 2001;116(2–3):197–9.

    PubMed  CAS  Google Scholar 

  160. Cassens S, Nickel EA, Quintel M, Neumann P. The serotonin syndrome fatal course of intoxication with citalopram and moclobemide. Anaesthesist. 2006;55(11):1189–96.

    PubMed  CAS  Google Scholar 

  161. Dams R, Benijts TH, Lambert WE, Van Bocxlaer JF, Van Varenbergh D, Van Peteghem C, et al. A fatal case of serotonin syndrome after combined moclobemide-citalopram intoxication. J Anal Toxicol. 2001;25(2):147–51.

    PubMed  CAS  Google Scholar 

  162. Isbister GK, McGettigan P, Dawson A. A fatal case of moclobemide-citalopram intoxication. J Anal Toxicol. 2001;25(8):716–7.

    PubMed  CAS  Google Scholar 

  163. Neuvonen PJ, Pohjola-Sintonen S, Tacke U, Vuori E. Five fatal cases of serotonin syndrome after moclobemide-citalopram or moclobemide-clomipramine overdoses. Lancet. 1993;342(8884):1419.

    PubMed  CAS  Google Scholar 

  164. Beasley CMJ, Masica DN, Heiligenstein JH, Wheadon DE, Zerbe RL. Possible monoamine oxidase inhibitor-serotonin uptake inhibitor interaction: fluoxetine clinical data and preclinical findings. J Clin Psychopharmacol. 1993;13(5):312–20.

    PubMed  Google Scholar 

  165. Feighner JP, Boyer WF, Tyler DL, Neborsky RJ. Adverse consequences of fluoxetine-maoi combination therapy. J Clin Psychiatry. 1990;51(6):222–5.

    PubMed  CAS  Google Scholar 

  166. Jermain DM, Hughes PL, Follender AB. Potential fluoxetine-selegiline interaction. Ann Pharmacother. 1992;26(10):1300.

    PubMed  CAS  Google Scholar 

  167. Bilbao Garay J, Mesa Plaza N, Castilla Castellano V, Dhimes Tejada P. Serotonin syndrome: report of a fatal case and review of the literature. Rev Clin Esp. 2002;202(4):209–11.

    PubMed  CAS  Google Scholar 

  168. Joffe RT, Bakish D. Combined ssri-moclobemide treatment of psychiatric illness. J Clin Psychiatry. 1994;55(1):24–5.

    PubMed  CAS  Google Scholar 

  169. Freezer A, Salem A, Irvine RJ. Effects of 3,4-methylenedioxymethamphetamine (mdma, ‘ecstasy’) and para-methoxyamphetamine on striatal 5-ht when co-administered with moclobemide. Brain Res. 2005;1041(1):48–55.

    PubMed  CAS  Google Scholar 

  170. Pilgrim JL, Gerostamoulos D, Drummer OH, Bollmann M. Involvement of amphetamines in sudden and unexpected death. J Forensic Sci. 2009;54(2):478–85.

    PubMed  CAS  Google Scholar 

  171. Vuori E, Henry JA, Ojanpera I, Nieminen R, Savolainen T, Wahlsten P, et al. Death following ingestion of mdma (ecstasy) and moclobemide. Addiction. 2003;98(3):365–8.

    PubMed  Google Scholar 

  172. Prior FH, Isbister GK, Dawson AH, Whyte IM. Serotonin toxicity with therapeutic doses of dexamphetamine and venlafaxine. Med J Aust. 2002;176(5):240–1.

    PubMed  Google Scholar 

  173. Muly EC, McDonald W, Steffens D, Book S. Serotonin syndrome produced by a combination of fluoxetine and lithium. Am J Psychiatry. 1993;150(10):1565.

    PubMed  CAS  Google Scholar 

  174. Noveske FG, Hahn KR, Flynn RJ. Possible toxicity of combined fluoxetine and lithium. Am J Psychiatry. 1989;146(11):1515.

    PubMed  CAS  Google Scholar 

  175. Salama AA, Shafey M. A case of severe lithium toxicity induced by combined fluoxetine and lithium carbonate. Am J Psychiatry. 1989;146(2):278.

    PubMed  CAS  Google Scholar 

  176. Evans M, Marwick P. Fluvoxamine and lithium: an unusual interaction. Br J Psychiatry. 1990;156:286.

    PubMed  CAS  Google Scholar 

  177. Ohman R, Spigset O. Serotonin syndrome induced by fluvoxamine-lithium interaction. Pharmacopsychiatry. 1993;26(6):263–4.

    PubMed  CAS  Google Scholar 

  178. Spina E, Pollicino AM, Avenoso A, Campo GM, Perucca E, Caputi AP. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit. 1993;15(3):243–6.

    PubMed  CAS  Google Scholar 

  179. Hartter S, Arand M, Oesch F, Hiemke C. Non-competitive inhibition of clomipramine n-demethylation by fluvoxamine. Psychopharmacology (Berl). 1995;117(2):149–53.

    CAS  Google Scholar 

  180. Jalil P. Toxic reaction following the combined administration of fluoxetine and phenytoin: two case reports. J Neurol Neurosurg Psychiatry. 1992;55(5):412–3.

    PubMed  CAS  Google Scholar 

  181. Schmider J, Greenblatt DJ, von Moltke LL, Harmatz JS, Shader RI. N-demethylation of amitriptyline in vitro: role of cytochrome p-450 3a (cyp3a) isoforms and effect of metabolic inhibitors. J Pharmacol Exp Ther. 1995;275(2):592–7.

    PubMed  CAS  Google Scholar 

  182. Bertschy G, Vandel S, Vandel B, Allers G, Volmat R. Fluvoxamine-tricyclic antidepressant interaction. An accidental finding. Eur J Clin Pharmacol. 1991;40(1):119–20.

    PubMed  CAS  Google Scholar 

  183. Dursun SM, Mathew VM, Reveley MA. Toxic serotonin syndrome after fluoxetine plus carbamazepine. Lancet. 1993;342(8868):442–3.

    PubMed  CAS  Google Scholar 

  184. Martinelli V, Bocchetta A, Palmas AM, Del Zompo M. An interaction between carbamazepine and fluvoxamine. Br J Clin Pharmacol. 1993;36(6):615–6.

    PubMed  CAS  Google Scholar 

  185. Kesavan S, Sobala GM. Serotonin syndrome with fluoxetine plus tramadol. J R Soc Med. 1999;92(9):474–5.

    PubMed  CAS  Google Scholar 

  186. Mason BJ, Blackburn KH. Possible serotonin syndrome associated with tramadol and sertraline coadministration. Ann Pharmacother. 1997;31(2):175–7.

    PubMed  CAS  Google Scholar 

  187. Mahlberg R, Kunz D, Sasse J, Kirchheiner J. Serotonin syndrome with tramadol and citalopram. Am J Psychiatry. 2004;161(6):1129.

    PubMed  Google Scholar 

  188. Egberts AC, ter Borgh J, Brodie-Meijer CC. Serotonin syndrome attributed to tramadol addition to paroxetine therapy. Int Clin Psychopharmacol. 1997;12(3):181–2.

    PubMed  CAS  Google Scholar 

  189. Gnanadesigan N, Espinoza RT, Smith R, Israel M, Reuben DB. Interaction of serotonergic antidepressants and opioid analgesics: is serotonin syndrome going undetected? J Am Med Dir Assoc. 2005;6(4):265–9.

    PubMed  Google Scholar 

  190. Karunatilake H, Buckley NA. Serotonin syndrome induced by fluvoxamine and oxycodone. Ann Pharmacother. 2006;40(1):155–7.

    PubMed  Google Scholar 

  191. Houlihan DJ. Serotonin syndrome resulting from coadministration of tramadol, venlafaxine, and mirtazapine. Ann Pharmacother. 2004;38(3):411–3.

    PubMed  Google Scholar 

  192. Ripple MG, Pestaner JP, Levine BS, Smialek JE. Lethal combination of tramadol and multiple drugs affecting serotonin. Am J Forensic Med Pathol. 2000;21(4):370–4.

    PubMed  CAS  Google Scholar 

  193. Bush E, Miller C, Friedman I. A case of serotonin syndrome and mutism associated with methadone. J Palliat Med. 2006;9(6):1257–9.

    PubMed  Google Scholar 

  194. Iribarne C, Dreano Y, Bardou LG, Menez JF, Berthou F. Interaction of methadone with substrates of human hepatic cytochrome p450 3a4. Toxicology. 1997;117(1):13–23.

    PubMed  CAS  Google Scholar 

  195. Hamilton SP, Nunes EV, Janal M, Weber L. The effect of sertraline on methadone plasma levels in methadone-maintenance patients. Am J Addict. 2000;9(1):63–9.

    PubMed  CAS  Google Scholar 

  196. Reeves RR, Bullen JA. Serotonin syndrome produced by paroxetine and low-dose trazodone. Psychosomatics. 1995;36(2):159–60.

    PubMed  CAS  Google Scholar 

  197. McCue RE, Joseph M. Venlafaxine- and trazodone-induced serotonin syndrome. Am J Psychiatry. 2001;158(12):2088–9.

    PubMed  CAS  Google Scholar 

  198. Fisher AA, Davis MW. Serotonin syndrome caused by selective serotonin reuptake-inhibitors-metoclopramide interaction. Ann Pharmacother. 2002;36(1):67–71.

    PubMed  Google Scholar 

  199. Munhoz RP. Serotonin syndrome induced by a combination of bupropion and ssris. Clin Neuropharmacol. 2004;27(5):219–22.

    PubMed  Google Scholar 

  200. Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol. 1994;46(1):35–9.

    PubMed  CAS  Google Scholar 

  201. Steiner W, Fontaine R. Toxic reaction following the combined administration of fluoxetine and l-tryptophan: five case reports. Biol Psychiatry. 1986;21(11):1067–71.

    PubMed  CAS  Google Scholar 

  202. Clark DB, Andrus MR, Byrd DC. Drug interactions between linezolid and selective serotonin reuptake inhibitors: case report involving sertraline and review of the literature. Pharmacotherapy. 2006;26(2):269–76.

    PubMed  Google Scholar 

  203. Erjavec MK, Coda BA, Nguyen Q, Donaldson G, Risler L, Shen DD. Morphine-fluoxetine interactions in healthy volunteers: analgesia and side effects. J Clin Pharmacol. 2000;40(11):1286–95.

    PubMed  CAS  Google Scholar 

  204. Kung SWN. M. H. Serotonin syndrome with tramadol and dextromethorphan. Hong Kong J Emerg Med. 2007;14(1):48–52.

    Google Scholar 

  205. Gillman PK. Possible serotonin syndrome with moclobemide and pethidine. Med J Aust. 1995;162(10):554.

    PubMed  CAS  Google Scholar 

  206. Starr C. Interaction between pethidine and selegiline. Lancet. 1991;337(8740):554.

    PubMed  CAS  Google Scholar 

  207. Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline. Lancet. 1991;337(8735):246.

    PubMed  CAS  Google Scholar 

  208. Emims [database on the Internet] 1996–2010. Available from: www.mims.com.au. Accessed: 2009–2010.

  209. Welzen M, Uges DA. Tiaft reference blood level list of therapeutic and toxic substances [document online]: Www.Tiaft.Org. 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Pilgrim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilgrim, J.L., Gerostamoulos, D. & Drummer, O.H. Review: Pharmacogenetic aspects of the effect of cytochrome P450 polymorphisms on serotonergic drug metabolism, response, interactions, and adverse effects. Forensic Sci Med Pathol 7, 162–184 (2011). https://doi.org/10.1007/s12024-010-9188-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-010-9188-3

Keywords

Navigation