Skip to main content

Advertisement

Log in

What Have We Learned from Molecular Biology of Paragangliomas and Pheochromocytomas?

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Recent advances in molecular genetics and genomics have led to increased understanding of the aetiopathogenesis of pheochromocytomas and paragangliomas (PPGLs). Thus, pan-genomic studies now provide a comprehensive integrated genomic analysis of PPGLs into distinct molecularly defined subtypes concordant with tumour genotypes. In addition, new embryological discoveries have refined the concept of how normal paraganglia develop, potentially establishing a developmental basis for genotype–phenotype correlations for PPGLs. The challenge for modern pathology is to translate these scientific discoveries into routine practice, which will be based largely on histopathology for the foreseeable future. Here, we review recent progress concerning the cell of origin and molecular pathogenesis of PPGLs, including pathogenetic mechanisms, genetic susceptibility and molecular classification. The current roles and tools of pathologists are considered from a histopathological perspective, including differential diagnoses, genotype–phenotype correlations and the use of immunohistochemistry in identifying hereditary predisposition and validating genetic variants of unknown significance. Current and potential molecular prognosticators are also presented with the hope that predictive molecular biomarkers will be integrated into risk stratification scoring systems to assess the metastatic potential of these intriguing neoplasms and identify potential drug targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Osinga TE, Korpershoek E, de Krijger RR, et al (2015) Catecholamine-Synthesizing Enzymes Are Expressed in Parasympathetic Head and Neck Paraganglioma Tissue. Neuroendocrinology 101:289–295. https://doi.org/10.1159/000377703

    Article  CAS  PubMed  Google Scholar 

  2. Papathomas TG, Giordano TJ, Maher ER, Tischler AS (2019) Adrenal Glands Tumors: Pathology and Genetics. In: Boffetta P, Hainaut PBT-E of C (Third E (eds). Academic Press, Oxford, pp 18–29

    Google Scholar 

  3. Dahia PLM (2017) Pheochromocytomas and Paragangliomas, Genetically Diverse and Minimalist, All at Once! Cancer Cell 31:159–161. https://doi.org/10.1016/j.ccell.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  4. Evenepoel L, Papathomas TG, Krol N, et al (2015) Toward an improved definition of the genetic and tumor spectrum associated with SDH germ-line mutations. Genet Med 17:610–620. https://doi.org/10.1038/gim.2014.162

    Article  CAS  PubMed  Google Scholar 

  5. Cardot-Bauters C, Carnaille B, Aubert S, et al (2019) A Full Phenotype of Paraganglioma Linked to a Germline SDHB Mosaic Mutation. J Clin Endocrinol Metab 104:3362–3366. https://doi.org/10.1210/jc.2019-00175

    Article  PubMed  Google Scholar 

  6. Crona J, Taïeb D, Pacak K (2017) New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification. Endocr Rev 38:489–515. https://doi.org/10.1210/er.2017-00062

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fishbein L, Khare S, Wubbenhorst B, et al (2015) Whole-exome sequencing identifies somatic ATRX mutations in pheochromocytomas and paragangliomas. Nat Commun 6:6140. https://doi.org/10.1038/ncomms7140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castro-Vega LJ, Letouzé E, Burnichon N, et al (2015) Multi-omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun 6:6044. https://doi.org/10.1038/ncomms7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toledo RA, Qin Y, Cheng Z-M, et al (2016) Recurrent Mutations of Chromatin-Remodeling Genes and Kinase Receptors in Pheochromocytomas and Paragangliomas. Clin cancer Res an Off J Am Assoc Cancer Res 22:2301–2310. https://doi.org/10.1158/1078-0432.CCR-15-1841

    Article  CAS  Google Scholar 

  10. Liu T, Brown TC, Juhlin CC, et al (2014) The activating TERT promoter mutation C228T is recurrent in subsets of adrenal tumors. Endocr Relat Cancer 21:427–434. https://doi.org/10.1530/ERC-14-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Papathomas TG, Oudijk L, Zwarthoff EC, et al (2014) Telomerase reverse transcriptase promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia. Endocr Relat Cancer 21:653–661. https://doi.org/10.1530/ERC-13-0429

    Article  CAS  PubMed  Google Scholar 

  12. Juhlin CC, Stenman A, Haglund F, et al (2015) Whole-exome sequencing defines the mutational landscape of pheochromocytoma and identifies KMT2D as a recurrently mutated gene. Genes Chromosomes Cancer 54:542–554. https://doi.org/10.1002/gcc.22267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tischler AS, Asa SL (2019) Paraganglia. In: Mills SE (ed) Histology for Pathologists, 5th ed. Lippincott Williams and Wilkins, Philadephia, PA, USA, pp 1274–1295

    Google Scholar 

  14. Furlan A, Dyachuk V, Kastriti ME, et al (2017) Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 357. https://doi.org/10.1126/science.aal3753

  15. Scriba LD, Bornstein SR, Santambrogio A, et al (2020) Cancer Stem Cells in Pheochromocytoma and Paraganglioma. Front Endocrinol (Lausanne) 11:79. https://doi.org/10.3389/fendo.2020.00079

    Article  Google Scholar 

  16. Kastriti ME, Kameneva P, Kamenev D, et al (2019) Schwann Cell Precursors Generate the Majority of Chromaffin Cells in Zuckerkandl Organ and Some Sympathetic Neurons in Paraganglia. Front Mol Neurosci 12:6. https://doi.org/10.3389/fnmol.2019.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hockman D, Adameyko I, Kaucka M, et al (2018) Striking parallels between carotid body glomus cell and adrenal chromaffin cell development. Dev Biol 444 Suppl:S308–S324. https://doi.org/10.1016/j.ydbio.2018.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schlisio S, Kenchappa RS, Vredeveld LCW, et al (2008) The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 22:884–893. https://doi.org/10.1101/gad.1648608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubard Gault M, Mandelker D, DeLair D, et al (2018) Germline SDHA mutations in children and adults with cancer. Cold Spring Harb Mol case Stud 4. https://doi.org/10.1101/mcs.a002584

  20. Wu W, Xu WJ, Liu J Bin, et al (2019) Exome sequencing identifies predisposing and fusion gene in ganglioneuroma, ganglioneuroblastoma and neuroblastoma. Math Biosci Eng 16:7217–7229. https://doi.org/10.3934/mbe.2019362

    Article  PubMed  Google Scholar 

  21. Pozza C, Sesti F, Di Dato C, et al (2020) A Novel MAX Gene Mutation Variant in a Patient With Multiple and “Composite” Neuroendocrine-Neuroblastic Tumors. Front. Endocrinol. (Lausanne). 11:234

  22. Lloyd R V, Osamura RY, Klöppel G, Rosai J (2017) WHO Classification of Tumours of Endocrine Organs. International Agency for Research on Cancer

  23. Kastriti ME, Kameneva P, Adameyko I (2020) Stem cells, evolutionary aspects and pathology of the adrenal medulla: A new developmental paradigm. Mol Cell Endocrinol 518:110998. https://doi.org/10.1016/j.mce.2020.110998

    Article  CAS  PubMed  Google Scholar 

  24. Langley K, Grant NJ (1999) Molecular markers of sympathoadrenal cells. Cell Tissue Res 298:185–206. https://doi.org/10.1007/pl00008810

    Article  CAS  PubMed  Google Scholar 

  25. Lee SE, Oh E, Lee B, et al (2016) Phenylethanolamine N-methyltransferase downregulation is associated with malignant pheochromocytoma/paraganglioma. Oncotarget 7:24141–24153. https://doi.org/10.18632/oncotarget.8234

  26. Fishbein L, Wilkerson MD (2018) Chromaffin cell biology: inferences from The Cancer Genome Atlas. Cell Tissue Res 372:339–346. https://doi.org/10.1007/s00441-018-2795-0

    Article  CAS  PubMed  Google Scholar 

  27. Castro-Vega LJ, Lepoutre-Lussey C, Gimenez-Roqueplo A-P, Favier J (2016) Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene 35:1080–1089. https://doi.org/10.1038/onc.2015.172

    Article  CAS  PubMed  Google Scholar 

  28. Buffet A, Burnichon N, Favier J, Gimenez-Roqueplo A-P (2020) An overview of 20 years of genetic studies in pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 34:101416. https://doi.org/10.1016/j.beem.2020.101416

    Article  CAS  PubMed  Google Scholar 

  29. Pillai S, Gopalan V, Smith RA, Lam AK-Y (2016) Updates on the genetics and the clinical impacts on phaeochromocytoma and paraganglioma in the new era. Crit Rev Oncol Hematol 100:190–208. https://doi.org/10.1016/j.critrevonc.2016.01.022

    Article  PubMed  Google Scholar 

  30. Toledo RA (2017) Genetics of Pheochromocytomas and Paragangliomas: An Overview on the Recently Implicated Genes MERTK, MET, Fibroblast Growth Factor Receptor 1, and H3F3A. Endocrinol Metab Clin North Am 46:459–489. https://doi.org/10.1016/j.ecl.2017.01.009

    Article  PubMed  Google Scholar 

  31. Remacha L, Comino-Méndez I, Richter S, et al (2017) Targeted Exome Sequencing of Krebs Cycle Genes Reveals Candidate Cancer-Predisposing Mutations in Pheochromocytomas and Paragangliomas. Clin cancer Res an Off J Am Assoc Cancer Res 23:6315–6324. https://doi.org/10.1158/1078-0432.CCR-16-2250

    Article  CAS  Google Scholar 

  32. Papathomas TG, Sun N, Chortis V, et al (2019) Novel methods in adrenal research: a metabolomics approach. Histochem Cell Biol 151:201–216. https://doi.org/10.1007/s00418-019-01772-w

    Article  CAS  PubMed  Google Scholar 

  33. Richter S, Gieldon L, Pang Y, et al (2019) Metabolome-guided genomics to identify pathogenic variants in isocitrate dehydrogenase, fumarate hydratase, and succinate dehydrogenase genes in pheochromocytoma and paraganglioma. Genet Med 21:705–717. https://doi.org/10.1038/s41436-018-0106-5

    Article  CAS  PubMed  Google Scholar 

  34. Kim E, Wright MJ, Sioson L, et al (2017) Utility of the succinate: Fumarate ratio for assessing SDH dysfunction in different tumor types. Mol Genet Metab reports 10:45–49. https://doi.org/10.1016/j.ymgmr.2016.12.006

    Article  CAS  Google Scholar 

  35. Lussey-Lepoutre C, Bellucci A, Burnichon N, et al (2020) Succinate detection using in vivo (1)H-MR spectroscopy identifies germline and somatic SDHx mutations in paragangliomas. Eur J Nucl Med Mol Imaging 47:1510–1517. https://doi.org/10.1007/s00259-019-04633-9

    Article  CAS  PubMed  Google Scholar 

  36. Whitworth J, Skytte A-B, Sunde L, et al (2016) Multilocus Inherited Neoplasia Alleles Syndrome: A Case Series and Review. JAMA Oncol 2:373–379. https://doi.org/10.1001/jamaoncol.2015.4771

    Article  PubMed  Google Scholar 

  37. Zbuk KM, Patocs A, Shealy A, et al (2007) Germline mutations in PTEN and SDHC in a woman with epithelial thyroid cancer and carotid paraganglioma. Nat Clin Pract Oncol 4:608–612. https://doi.org/10.1038/ncponc0935

    Article  CAS  PubMed  Google Scholar 

  38. Gieldon L, William D, Hackmann K, et al (2019) Optimizing Genetic Workup in Pheochromocytoma and Paraganglioma by Integrating Diagnostic and Research Approaches. Cancers (Basel) 11. https://doi.org/10.3390/cancers11060809

  39. Whitworth J, Smith PS, Martin J-E, et al (2018) Comprehensive Cancer-Predisposition Gene Testing in an Adult Multiple Primary Tumor Series Shows a Broad Range of Deleterious Variants and Atypical Tumor Phenotypes. Am J Hum Genet 103:3–18. https://doi.org/10.1016/j.ajhg.2018.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gniado E, Carracher CP, Sharma S (2020) Simultaneous Occurrence of Germline Mutations of SDHB and TP53 in a Patient with Metastatic Pheochromocytoma. J Clin Endocrinol Metab 105. https://doi.org/10.1210/clinem/dgz269

  41. Luchetti A, Walsh D, Rodger F, et al (2015) Profiling of somatic mutations in phaeochromocytoma and paraganglioma by targeted next generation sequencing analysis. Int J Endocrinol 2015:138573. https://doi.org/10.1155/2015/138573

    Article  PubMed  PubMed Central  Google Scholar 

  42. Crona J, Delgado Verdugo A, Maharjan R, et al (2013) Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified by exome sequencing. J Clin Endocrinol Metab 98:E1266-71. https://doi.org/10.1210/jc.2012-4257

    Article  CAS  PubMed  Google Scholar 

  43. Oudijk L, de Krijger RR, Rapa I, et al (2014) H-RAS mutations are restricted to sporadic pheochromocytomas lacking specific clinical or pathological features: data from a multi-institutional series. J Clin Endocrinol Metab 99:E1376-80. https://doi.org/10.1210/jc.2013-3879

    Article  CAS  PubMed  Google Scholar 

  44. Stenman A, Welander J, Gustavsson I, et al (2016) HRAS mutation prevalence and associated expression patterns in pheochromocytoma. Genes Chromosomes Cancer 55:452–459. https://doi.org/10.1002/gcc.22347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flynn A, Benn D, Clifton-Bligh R, et al (2015) The genomic landscape of phaeochromocytoma. J Pathol 236:78–89. https://doi.org/10.1002/path.4503

    Article  CAS  PubMed  Google Scholar 

  46. Fishbein L, Leshchiner I, Walter V, et al (2017) Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell 31:181–193. https://doi.org/10.1016/j.ccell.2017.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilzén A, Rehammar A, Muth A, et al (2016) Malignant pheochromocytomas/paragangliomas harbor mutations in transport and cell adhesion genes. Int J cancer 138:2201–2211. https://doi.org/10.1002/ijc.29957

    Article  CAS  PubMed  Google Scholar 

  48. Job S, Draskovic I, Burnichon N, et al (2019) Telomerase Activation and ATRX Mutations Are Independent Risk Factors for Metastatic Pheochromocytoma and Paraganglioma. Clin cancer Res an Off J Am Assoc Cancer Res 25:760–770. https://doi.org/10.1158/1078-0432.CCR-18-0139

    Article  CAS  Google Scholar 

  49. Tomić TT, Olausson J, Rehammar A, et al (2020) MYO5B mutations in pheochromocytoma/paraganglioma promote cancer progression. PLoS Genet 16:e1008803. https://doi.org/10.1371/journal.pgen.1008803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Richter S, Klink B, Nacke B, et al (2016) Epigenetic Mutation of the Succinate Dehydrogenase C Promoter in a Patient With Two Paragangliomas. J Clin Endocrinol Metab 101:359–363. https://doi.org/10.1210/jc.2015-3856

    Article  CAS  PubMed  Google Scholar 

  51. Haller F, Moskalev EA, Faucz FR, et al (2014) Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer 21:567–577. https://doi.org/10.1530/ERC-14-0254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ghosal S, Das S, Pang Y, et al (2020) Long intergenic noncoding RNA profiles of pheochromocytoma and paraganglioma: A novel prognostic biomarker. Int J cancer 146:2326–2335. https://doi.org/10.1002/ijc.32654

    Article  CAS  PubMed  Google Scholar 

  53. Job S, Georges A, Burnichon N, et al (2020) Transcriptome Analysis of lncRNAs in Pheochromocytomas and Paragangliomas. J Clin Endocrinol Metab 105:. https://doi.org/10.1210/clinem/dgz168

  54. Yu A, Li M, Xing C, et al (2020) A Comprehensive Analysis Identified the Key Differentially Expressed Circular Ribonucleic Acids and Methylation-Related Function in Pheochromocytomas and Paragangliomas. Front Genet 11:15. https://doi.org/10.3389/fgene.2020.00015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Calsina B, Castro-Vega LJ, Torres-Pérez R, et al (2019) Integrative multi-omics analysis identifies a prognostic miRNA signature and a targetable miR-21-3p/TSC2/mTOR axis in metastatic pheochromocytoma/paraganglioma. Theranostics 9:4946–4958. https://doi.org/10.7150/thno.35458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dahia PLM (2014) Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 14:108–119. https://doi.org/10.1038/nrc3648

    Article  CAS  PubMed  Google Scholar 

  57. Flynn A, Dwight T, Harris J, et al (2016) Pheo-Type: A Diagnostic Gene-expression Assay for the Classification of Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 101:1034–1043. https://doi.org/10.1210/jc.2015-3889

    Article  CAS  PubMed  Google Scholar 

  58. Fliedner SMJ, Shankavaram U, Marzouca G, et al (2016) Hypoxia-Inducible Factor 2α Mutation-Related Paragangliomas Classify as Discrete Pseudohypoxic Subcluster. Neoplasia 18:567–576. https://doi.org/10.1016/j.neo.2016.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Letouzé E, Martinelli C, Loriot C, et al (2013) SDH Mutations Establish a Hypermethylator Phenotype in Paraganglioma. Cancer Cell 23:739–752. https://doi.org/10.1016/j.ccr.2013.04.018

  60. Morin A, Goncalves J, Moog S, et al (2020) TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2α-Driven Mesenchymal Transition. Cell Rep 30:4551-4566.e7. https://doi.org/10.1016/j.celrep.2020.03.022

    Article  CAS  PubMed  Google Scholar 

  61. Björklund P, Backman S (2018) Epigenetics of pheochromocytoma and paraganglioma. Mol Cell Endocrinol 469:92–97. https://doi.org/10.1016/j.mce.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  62. Schaefer I-M, Hornick JL, Bovée JVMG (2018) The role of metabolic enzymes in mesenchymal tumors and tumor syndromes: genetics, pathology, and molecular mechanisms. Lab Invest 98:414–426. https://doi.org/10.1038/s41374-017-0003-6

    Article  CAS  PubMed  Google Scholar 

  63. Ando K, Yokochi T, Mukai A, et al (2019) Tumor suppressor KIF1Bβ regulates mitochondrial apoptosis in collaboration with YME1L1. Mol Carcinog 58:1134–1144. https://doi.org/10.1002/mc.22997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Crona J, Backman S, Welin S, et al (2018) RNA-Sequencing Analysis of Adrenocortical Carcinoma, Pheochromocytoma and Paraganglioma from a Pan-Cancer Perspective. Cancers (Basel) 10. https://doi.org/10.3390/cancers10120518

  65. Patterson E, Webb R, Weisbrod A, et al (2012) The microRNA expression changes associated with malignancy and SDHB mutation in pheochromocytoma. Endocr Relat Cancer 19:157–166. https://doi.org/10.1530/ERC-11-0308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pillai S, Lo CY, Liew V, et al (2017) MicroRNA 183 family profiles in pheochromocytomas are related to clinical parameters and SDHB expression. Hum Pathol 64:91–97. https://doi.org/10.1016/j.humpath.2017.03.017

    Article  CAS  PubMed  Google Scholar 

  67. Papathomas TG, de Krijger RR, Tischler AS (2013) Paragangliomas: update on differential diagnostic considerations, composite tumors, and recent genetic developments. Semin Diagn Pathol 30:207–223. https://doi.org/10.1053/j.semdp.2013.06.006

    Article  PubMed  Google Scholar 

  68. Hoekstra AS, Devilee P, Bayley J-P (2015) Models of parent-of-origin tumorigenesis in hereditary paraganglioma. Semin Cell Dev Biol 43:117–124. https://doi.org/10.1016/j.semcdb.2015.05.011

    Article  PubMed  Google Scholar 

  69. Yeap PM, Tobias ES, Mavraki E, et al (2011) Molecular analysis of pheochromocytoma after maternal transmission of SDHD mutation elucidates mechanism of parent-of-origin effect. J Clin Endocrinol Metab 96:E2009-13. https://doi.org/10.1210/jc.2011-1244

    Article  CAS  PubMed  Google Scholar 

  70. Bayley J-P, Oldenburg RA, Nuk J, et al (2014) Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations. BMC Med Genet 15:111. https://doi.org/10.1186/s12881-014-0111-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maher ER (2013) HIF2 and endocrine neoplasia: an evolving story. Endocr Relat Cancer 20:C5-7. https://doi.org/10.1530/ERC-13-0146

    Article  CAS  PubMed  Google Scholar 

  72. Carney JA (2009) Carney triad: a syndrome featuring paraganglionic, adrenocortical, and possibly other endocrine tumors. J Clin Endocrinol Metab 94:3656–3662. https://doi.org/10.1210/jc.2009-1156

    Article  CAS  PubMed  Google Scholar 

  73. Almeida MQ, Stratakis CA (2010) Solid tumors associated with multiple endocrine neoplasias. Cancer Genet Cytogenet 203:30–36. https://doi.org/10.1016/j.cancergencyto.2010.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boikos SA, Xekouki P, Fumagalli E, et al (2016) Carney triad can be (rarely) associated with germline succinate dehydrogenase defects. Eur J Hum Genet 24:569–573. https://doi.org/10.1038/ejhg.2015.142

    Article  CAS  PubMed  Google Scholar 

  75. Settas N, Faucz FR, Stratakis CA (2018) Succinate dehydrogenase (SDH) deficiency, Carney triad and the epigenome. Mol Cell Endocrinol 469:107–111. https://doi.org/10.1016/j.mce.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  76. Killian JK, Miettinen M, Walker RL, et al (2014) Recurrent epimutation of SDHC in gastrointestinal stromal tumors. Sci Transl Med 6:268ra177. https://doi.org/10.1126/scitranslmed.3009961

  77. Bausch B, Schiavi F, Ni Y, et al (2017) Clinical Characterization of the Pheochromocytoma and Paraganglioma Susceptibility Genes SDHA, TMEM127, MAX, and SDHAF2 for Gene-Informed Prevention. JAMA Oncol 3:1204–1212. https://doi.org/10.1001/jamaoncol.2017.0223

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pang Y, Gupta G, Jha A, et al (2019) Nonmosaic somatic HIF2A mutations associated with late onset polycythemia-paraganglioma syndrome: Newly recognized subclass of polycythemia-paraganglioma syndrome. Cancer 125:1258–1266. https://doi.org/10.1002/cncr.31839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Favier J, Amar L, Gimenez-Roqueplo A-P (2015) Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol 11:101–111. https://doi.org/10.1038/nrendo.2014.188

    Article  CAS  PubMed  Google Scholar 

  80. Wells SAJ (2018) Advances in the management of MEN2: from improved surgical and medical treatment to novel kinase inhibitors. Endocr Relat Cancer 25:T1–T13. https://doi.org/10.1530/ERC-17-0325

    Article  PubMed  Google Scholar 

  81. Moline J, Eng C (2011) Multiple endocrine neoplasia type 2: an overview. Genet Med 13:755–764. https://doi.org/10.1097/GIM.0b013e318216cc6d

    Article  CAS  PubMed  Google Scholar 

  82. Mulligan LM (2014) RET revisited: expanding the oncogenic portfolio. Nat Rev Cancer 14:173–186. https://doi.org/10.1038/nrc3680

    Article  CAS  PubMed  Google Scholar 

  83. Fishbein L (2019) Pheochromocytoma/Paraganglioma: Is This a Genetic Disorder? Curr Cardiol Rep 21:104. https://doi.org/10.1007/s11886-019-1184-y

    Article  PubMed  Google Scholar 

  84. Wells SAJ, Asa SL, Dralle H, et al (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25:567–610. https://doi.org/10.1089/thy.2014.0335

    Article  PubMed  PubMed Central  Google Scholar 

  85. Castinetti F, Qi X-P, Walz MK, et al (2014) Outcomes of adrenal-sparing surgery or total adrenalectomy in phaeochromocytoma associated with multiple endocrine neoplasia type 2: an international retrospective population-based study. Lancet Oncol 15:648–655. https://doi.org/10.1016/S1470-2045(14)70154-8

    Article  PubMed  Google Scholar 

  86. Richard S, Gardie B, Couvé S, Gad S (2013) Von Hippel-Lindau: how a rare disease illuminates cancer biology. Semin Cancer Biol 23:26–37. https://doi.org/10.1016/j.semcancer.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  87. Lonser RR, Glenn GM, Walther M, et al (2003) von Hippel-Lindau disease. Lancet (London, England) 361:2059–2067. https://doi.org/10.1016/S0140-6736(03)13643-4

    Article  CAS  Google Scholar 

  88. Walther MM, Reiter R, Keiser HR, et al (1999) Clinical and genetic characterization of pheochromocytoma in von Hippel-Lindau families: comparison with sporadic pheochromocytoma gives insight into natural history of pheochromocytoma. J Urol 162:659–664. https://doi.org/10.1097/00005392-199909010-00004

    Article  CAS  PubMed  Google Scholar 

  89. Maher ER, Neumann HP, Richard S (2011) von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet 19:617–623. https://doi.org/10.1038/ejhg.2010.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guilmette J, Sadow PM (2019) A Guide to Pheochromocytomas and Paragangliomas. Surg Pathol Clin 12:951–965. https://doi.org/10.1016/j.path.2019.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  91. Delman KA, Shapiro SE, Jonasch EW, et al (2006) Abdominal visceral lesions in von Hippel-Lindau disease: incidence and clinical behavior of pancreatic and adrenal lesions at a single center. World J Surg 30:665–669. https://doi.org/10.1007/s00268-005-0359-4

    Article  PubMed  Google Scholar 

  92. Welander J, Söderkvist P, Gimm O (2011) Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 18:R253-76. https://doi.org/10.1530/ERC-11-0170

    Article  CAS  PubMed  Google Scholar 

  93. Lammert M, Friedman JM, Kluwe L, Mautner VF (2005) Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol 141:71–74. https://doi.org/10.1001/archderm.141.1.71

    Article  PubMed  Google Scholar 

  94. Gruber LM, Erickson D, Babovic-Vuksanovic D, et al (2017) Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol (Oxf) 86:141–149. https://doi.org/10.1111/cen.13163

    Article  CAS  Google Scholar 

  95. Bausch B, Borozdin W, Neumann HPH (2006) Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N. Engl. J. Med. 354:2729–2731

    Article  CAS  Google Scholar 

  96. Baysal BE, Ferrell RE, Willett-Brozick JE, et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851. https://doi.org/10.1126/science.287.5454.848

    Article  CAS  PubMed  Google Scholar 

  97. Burnichon N, Rohmer V, Amar L, et al (2009) The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 94:2817–2827. https://doi.org/10.1210/jc.2008-2504

    Article  CAS  PubMed  Google Scholar 

  98. Burnichon N, Mazzella J-M, Drui D, et al (2017) Risk assessment of maternally inherited SDHD paraganglioma and phaeochromocytoma. J Med Genet 54:125–133. https://doi.org/10.1136/jmedgenet-2016-104297

    Article  CAS  PubMed  Google Scholar 

  99. Pasini B, Stratakis CA (2009) SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 266:19–42. https://doi.org/10.1111/j.1365-2796.2009.02111.x

    Article  CAS  PubMed  Google Scholar 

  100. Fliedner SMJ, Lehnert H, Pacak K (2010) Metastatic paraganglioma. Semin Oncol 37:627–637. https://doi.org/10.1053/j.seminoncol.2010.10.017

    Article  PubMed  PubMed Central  Google Scholar 

  101. van der Tuin K, Mensenkamp AR, Tops CMJ, et al (2018) Clinical Aspects of SDHA-Related Pheochromocytoma and Paraganglioma: A Nationwide Study. J Clin Endocrinol Metab 103:438–445. https://doi.org/10.1210/jc.2017-01762

    Article  PubMed  Google Scholar 

  102. Andrews KA, Ascher DB, Pires DEV, et al (2018) Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB, SDHC and SDHD. J Med Genet 55:384–394. https://doi.org/10.1136/jmedgenet-2017-105127

    Article  CAS  PubMed  Google Scholar 

  103. Jha A, de Luna K, Balili CA, et al (2019) Clinical, Diagnostic, and Treatment Characteristics of SDHA-Related Metastatic Pheochromocytoma and Paraganglioma. Front Oncol 9:53. https://doi.org/10.3389/fonc.2019.00053

    Article  PubMed  PubMed Central  Google Scholar 

  104. Neumann HP, Young WFJ, Krauss T, et al (2018) 65 YEARS OF THE DOUBLE HELIX: Genetics informs precision practice in the diagnosis and management of pheochromocytoma. Endocr Relat Cancer 25:T201–T219. https://doi.org/10.1530/ERC-18-0085

    Article  PubMed  Google Scholar 

  105. Carney JA, Sheps SG, Go VL, Gordon H (1977) The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med 296:1517–1518. https://doi.org/10.1056/NEJM197706302962609

    Article  CAS  PubMed  Google Scholar 

  106. Carney JA, Stratakis CA (2002) Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 108:132–139. https://doi.org/10.1002/ajmg.10235

    Article  PubMed  Google Scholar 

  107. Daum O, Vanecek T, Sima R, Michal M (2006) Gastrointestinal stromal tumor: update. Klin Onkol 19:203–211

    Google Scholar 

  108. Castro-Vega LJ, Buffet A, De Cubas AA, et al (2014) Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet 23:2440–2446. https://doi.org/10.1093/hmg/ddt639

    Article  CAS  PubMed  Google Scholar 

  109. Clark GR, Sciacovelli M, Gaude E, et al (2014) Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab 99:E2046-50. https://doi.org/10.1210/jc.2014-1659

    Article  CAS  PubMed  Google Scholar 

  110. Lenders JWM, Duh Q-Y, Eisenhofer G, et al (2014) Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 99:1915–1942. https://doi.org/10.1210/jc.2014-1498

    Article  CAS  PubMed  Google Scholar 

  111. Plouin PF, Amar L, Dekkers OM, et al (2016) European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur J Endocrinol 174:G1–G10. https://doi.org/10.1530/EJE-16-0033

    Article  CAS  PubMed  Google Scholar 

  112. Toledo RA, Burnichon N, Cascon A, et al (2017) Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol 13:233–247. https://doi.org/10.1038/nrendo.2016.185

    Article  CAS  PubMed  Google Scholar 

  113. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem (Palo Alto Calif) 6:287–303. https://doi.org/10.1146/annurev-anchem-062012-092628

    Article  CAS  Google Scholar 

  114. Pillai S, Gopalan V, Lam AK-Y (2017) Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Crit Rev Oncol Hematol 116:58–67. https://doi.org/10.1016/j.critrevonc.2017.05.005

    Article  PubMed  Google Scholar 

  115. Welander J, Andreasson A, Juhlin CC, et al (2014) Rare Germline Mutations Identified by Targeted Next-Generation Sequencing of Susceptibility Genes in Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 99:E1352–E1360. https://doi.org/10.1210/jc.2013-4375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Liu P, Li M, Guan X, et al (2018) Clinical Syndromes and Genetic Screening Strategies of Pheochromocytoma and Paraganglioma. J kidney cancer VHL 5:14–22. https://doi.org/10.15586/jkcvhl.2018.113

  117. Mardis ER (2014) Sequencing the AML genome, transcriptome, and epigenome. Semin Hematol 51:250–258. https://doi.org/10.1053/j.seminhematol.2014.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bainbridge MN, Wang M, Burgess DL, et al (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol 11:R62. https://doi.org/10.1186/gb-2010-11-6-r62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Parla JS, Iossifov I, Grabill I, et al (2011) A comparative analysis of exome capture. Genome Biol 12:R97. https://doi.org/10.1186/gb-2011-12-9-r97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Buffet A, Calsina B, Flores S, et al (2020) Germline mutations in the new E1’ cryptic exon of the VHL gene in patients with tumours of von Hippel-Lindau disease spectrum or with paraganglioma. J Med Genet. https://doi.org/10.1136/jmedgenet-2019-106519

    Article  PubMed  PubMed Central  Google Scholar 

  121. Cowin PA, Anglesio M, Etemadmoghadam D, Bowtell DDL (2010) Profiling the Cancer Genome. Annu Rev Genomics Hum Genet 11:133–159. https://doi.org/10.1146/annurev-genom-082509-141536

    Article  CAS  PubMed  Google Scholar 

  122. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692. https://doi.org/10.1016/j.cell.2007.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339. https://doi.org/10.1038/nm.2305

    Article  CAS  PubMed  Google Scholar 

  124. de Cubas AA, Korpershoek E, Inglada-Pérez L, et al (2015) DNA Methylation Profiling in Pheochromocytoma and Paraganglioma Reveals Diagnostic and Prognostic Markers. Clin cancer Res an Off J Am Assoc Cancer Res 21:3020–3030. https://doi.org/10.1158/1078-0432.CCR-14-2804

    Article  CAS  Google Scholar 

  125. Lam AK-Y (2017) Update on Adrenal Tumours in 2017 World Health Organization (WHO) of Endocrine Tumours. Endocr Pathol 28:213–227. https://doi.org/10.1007/s12022-017-9484-5

    Article  PubMed  Google Scholar 

  126. Comino-Méndez I, Gracia-Aznárez FJ, Schiavi F, et al (2011) Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 43:663–667. https://doi.org/10.1038/ng.861

    Article  CAS  PubMed  Google Scholar 

  127. Buffet A, Morin A, Castro-Vega L-J, et al (2018) Germline Mutations in the Mitochondrial 2-Oxoglutarate/Malate Carrier SLC25A11 Gene Confer a Predisposition to Metastatic Paragangliomas. Cancer Res 78:1914–1922. https://doi.org/10.1158/0008-5472.CAN-17-2463

    Article  CAS  PubMed  Google Scholar 

  128. Dahia PLM, Clifton-Bligh R, Gimenez-Roqueplo A-P, et al (2020) HEREDITARY ENDOCRINE TUMOURS: CURRENT STATE-OF-THE-ART AND RESEARCH OPPORTUNITIES: Metastatic pheochromocytomas and paragangliomas: proceedings of the MEN2019 workshop. Endocr Relat Cancer 27:T41–T52. https://doi.org/10.1530/ERC-19-0435

    Article  CAS  PubMed  Google Scholar 

  129. Mei L, Khurana A, Al-Juhaishi T, et al (2019) Prognostic Factors of Malignant Pheochromocytoma and Paraganglioma: A Combined SEER and TCGA Databases Review. Horm Metab Res = Horm und Stoffwechselforsch = Horm Metab 51:451–457. https://doi.org/10.1055/a-0851-3275

  130. Calsina B, Currás-Freixes M, Buffet A, et al (2018) Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genet Med 20:1652–1662. https://doi.org/10.1038/s41436-018-0068-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cascón A, Remacha L, Calsina B, Robledo M (2019) Pheochromocytomas and Paragangliomas: Bypassing Cellular Respiration. Cancers (Basel) 11. https://doi.org/10.3390/cancers11050683

  132. Lee H, Jeong S, Yu Y, et al (2020) Risk of metastatic pheochromocytoma and paraganglioma in SDHx mutation carriers: a systematic review and updated meta-analysis. J Med Genet 57:217–225. https://doi.org/10.1136/jmedgenet-2019-106324

    Article  CAS  PubMed  Google Scholar 

  133. Dwight T, Flynn A, Amarasinghe K, et al (2018) TERT structural rearrangements in metastatic pheochromocytomas. Endocr Relat Cancer 25:1–9. https://doi.org/10.1530/ERC-17-0306

    Article  CAS  PubMed  Google Scholar 

  134. Hamidi O, Young WFJ, Iñiguez-Ariza NM, et al (2017) Malignant Pheochromocytoma and Paraganglioma: 272 Patients Over 55 Years. J Clin Endocrinol Metab 102:3296–3305. https://doi.org/10.1210/jc.2017-00992

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hamidi O (2019) Metastatic pheochromocytoma and paraganglioma: recent advances in prognosis and management. Curr Opin Endocrinol Diabetes Obes 26:146–154. https://doi.org/10.1097/MED.0000000000000476

    Article  PubMed  Google Scholar 

  136. Hamidi O, Young WFJ, Gruber L, et al (2017) Outcomes of patients with metastatic phaeochromocytoma and paraganglioma: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 87:440–450. https://doi.org/10.1111/cen.13434

    Article  Google Scholar 

  137. Hescot S, Curras-Freixes M, Deutschbein T, et al (2019) Prognosis of Malignant Pheochromocytoma and Paraganglioma (MAPP-Prono Study): A European Network for the Study of Adrenal Tumors Retrospective Study. J Clin Endocrinol Metab 104:2367–2374. https://doi.org/10.1210/jc.2018-01968

    Article  PubMed  Google Scholar 

  138. Roman-Gonzalez A, Zhou S, Ayala-Ramirez M, et al (2018) Impact of Surgical Resection of the Primary Tumor on Overall Survival in Patients With Metastatic Pheochromocytoma or Sympathetic Paraganglioma. Ann Surg 268:172–178. https://doi.org/10.1097/SLA.0000000000002195

    Article  PubMed  Google Scholar 

  139. Jochmanova I, Wolf KI, King KS, et al (2017) SDHB-related pheochromocytoma and paraganglioma penetrance and genotype-phenotype correlations. J Cancer Res Clin Oncol 143:1421–1435. https://doi.org/10.1007/s00432-017-2397-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Eisenhofer G, Timmers HJ, Lenders JWM, et al (2011) Age at diagnosis of pheochromocytoma differs according to catecholamine phenotype and tumor location. J Clin Endocrinol Metab 96:375–384. https://doi.org/10.1210/jc.2010-1588

    Article  CAS  PubMed  Google Scholar 

  141. Crona J, Lamarca A, Ghosal S, et al (2019) Genotype-phenotype correlations in pheochromocytoma and paraganglioma: a systematic review and individual patient meta-analysis. Endocr Relat Cancer 26:539–550. https://doi.org/10.1530/ERC-19-0024

    Article  CAS  PubMed  Google Scholar 

  142. Goncalves J, Lussey-Lepoutre C, Favier J, et al (2019) Emerging molecular markers of metastatic pheochromocytomas and paragangliomas. Ann Endocrinol (Paris) 80:159–162. https://doi.org/10.1016/j.ando.2019.04.003

    Article  Google Scholar 

  143. Backman S, Maharjan R, Falk-Delgado A, et al (2017) Global DNA Methylation Analysis Identifies Two Discrete clusters of Pheochromocytoma with Distinct Genomic and Genetic Alterations. Sci Rep 7:44943. https://doi.org/10.1038/srep44943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. de Vos L, Jung M, Koerber R-M, et al (2020) Treatment Response Monitoring in Patients with Advanced Malignancies Using Cell-Free SHOX2 and SEPT9 DNA Methylation in Blood: An Observational Prospective Study. J Mol Diagn 22:920–933. https://doi.org/10.1016/j.jmoldx.2020.04.205

    Article  CAS  PubMed  Google Scholar 

  145. Ellis DW, Srigley J (2016) Does standardised structured reporting contribute to quality in diagnostic pathology? The importance of evidence-based datasets. Virchows Arch 468:51–59. https://doi.org/10.1007/s00428-015-1834-4

    Article  CAS  PubMed  Google Scholar 

  146. Tischler A, Asa S, Clifton-Bligh R, et al (2019) Phaeochromocytoma and Paraganglioma Histopathology Reporting Guide. Sydney, Australia

    Google Scholar 

  147. Thompson LDR, Gill AJ, Asa SL, et al (2020) Data set for the reporting of pheochromocytoma and paraganglioma : explanations and recommendations of the guidelines from the International Collaboration on Cancer Reporting *. Hum Pathol. https://doi.org/10.1016/j.humpath.2020.04.012

    Article  PubMed  Google Scholar 

  148. Thompson LDR (2002) Pheochromocytoma of the Adrenal gland Scaled Score (PASS) to separate benign from malignant neoplasms: a clinicopathologic and immunophenotypic study of 100 cases. Am J Surg Pathol 26:551–566. https://doi.org/10.1097/00000478-200205000-00002

    Article  PubMed  Google Scholar 

  149. Kimura N, Takayanagi R, Takizawa N, et al (2014) Pathological grading for predicting metastasis in phaeochromocytoma and paraganglioma. https://doi.org/10.1530/ERC-13-0494

    Article  Google Scholar 

  150. Wachtel H, Hutchens T, Baraban E, et al (2020) Predicting Metastatic Potential in Pheochromocytoma and Paraganglioma: A Comparison of PASS and GAPP Scoring Systems. J Clin Endocrinol Metab 105. https://doi.org/10.1210/clinem/dgaa608

  151. Stenman A, Zedenius J, Juhlin CC (2019) The Value of Histological Algorithms to Predict the Malignancy Potential of Pheochromocytomas and Abdominal Paragangliomas — A Meta-Analysis and Systematic Review of the Literature. https://doi.org/10.3390/cancers11020225

  152. Amin MB, Edge S, Greene F, et al (2017) AJCC Cancer Staging Manual, 8th ed. Springer International Publishing

  153. Papathomas TG, Nosé V (2019) New and Emerging Biomarkers in Endocrine Pathology. Adv Anat Pathol 26:198–209. https://doi.org/10.1097/PAP.0000000000000227

    Article  CAS  PubMed  Google Scholar 

  154. Moriguchi T, Takako N, Hamada M, et al (2006) Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133:3871–3881. https://doi.org/10.1242/dev.02553

    Article  CAS  PubMed  Google Scholar 

  155. Kimura N, Miura Y, Nagatsu I, Nagura H (1992) Catecholamine synthesizing enzymes in 70 cases of functioning and non-functioning phaeochromocytoma and extra-adrenal paraganglioma. Virchows Arch A Pathol Anat Histopathol 421:25–32. https://doi.org/10.1007/BF01607135

    Article  CAS  PubMed  Google Scholar 

  156. Pai R, Manipadam MT, Singh P, et al (2014) Usefulness of Succinate dehydrogenase B (SDHB) immunohistochemistry in guiding mutational screening among patients with pheochromocytoma-paraganglioma syndromes. APMIS 122:1130–1135. https://doi.org/10.1111/apm.12269

    Article  CAS  PubMed  Google Scholar 

  157. Dahia PLM, Ross KN, Wright ME, et al (2005) A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 1:72–80. https://doi.org/10.1371/journal.pgen.0010008

    Article  CAS  PubMed  Google Scholar 

  158. Burnichon N, Brière J-J, Libé R, et al (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19:3011–3020. https://doi.org/10.1093/hmg/ddq206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Papathomas TG, Oudijk L, Persu A, et al (2015) SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod Pathol an Off J United States Can Acad Pathol Inc 28:807–821. https://doi.org/10.1038/modpathol.2015.41

  160. van Nederveen FH, Gaal J, Favier J, et al (2009) An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10:764–771. https://doi.org/10.1016/S1470-2045(09)70164-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Menara M, Oudijk L, Badoual C, et al (2015) SDHD Immunohistochemistry: A New Tool to Validate SDHx Mutations in Pheochromocytoma/Paraganglioma. J Clin Endocrinol Metab 100:E287–E291. https://doi.org/10.1210/jc.2014-1870

    Article  CAS  PubMed  Google Scholar 

  162. Skala SL, Dhanasekaran SM, Mehra R (2018) Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome (HLRCC): A Contemporary Review and Practical Discussion of the Differential Diagnosis for HLRCC-Associated Renal Cell Carcinoma. Arch Pathol Lab Med 142:1202–1215. https://doi.org/10.5858/arpa.2018-0216-RA

    Article  CAS  PubMed  Google Scholar 

  163. Favier J, Meatchi T, Robidel E, et al (2020) Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study. Mod Pathol an Off J United States Can Acad Pathol Inc 33:57–64. https://doi.org/10.1038/s41379-019-0343-4

  164. Korpershoek E, Koffy D, Eussen BH, et al (2016) Complex MAX Rearrangement in a Family With Malignant Pheochromocytoma, Renal Oncocytoma, and Erythrocytosis. J Clin Endocrinol Metab 101:453–460. https://doi.org/10.1210/jc.2015-2592

    Article  CAS  PubMed  Google Scholar 

  165. Cheung VKY, Gill AJ, Chou A (2018) Old, New, and Emerging Immunohistochemical Markers in Pheochromocytoma and Paraganglioma. Endocr Pathol 29:169–175. https://doi.org/10.1007/s12022-018-9534-7

    Article  PubMed  Google Scholar 

  166. Stenman A, Svahn F, Welander J, et al (2015) Immunohistochemical NF1 analysis does not predict NF1 gene mutation status in pheochromocytoma. Endocr Pathol 26:9–14. https://doi.org/10.1007/s12022-014-9348-1

    Article  CAS  PubMed  Google Scholar 

  167. Powers JF, Brachold JM, Tischler AS (2003) Ret protein expression in adrenal medullary hyperplasia and pheochromocytoma. Endocr Pathol 14:351–361. https://doi.org/10.1385/ep:14:4:351

    Article  CAS  PubMed  Google Scholar 

  168. Maffeis V, Cappellesso R, Nicolè L, et al (2019) Loss of BAP1 in Pheochromocytomas and Paragangliomas Seems Unrelated to Genetic Mutations. Endocr Pathol 30:276–284. https://doi.org/10.1007/s12022-019-09595-0

    Article  CAS  PubMed  Google Scholar 

  169. Wallace PW, Conrad C, Brückmann S, et al (2020) Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas. J Pathol 251:378–387. https://doi.org/10.1002/path.5472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Stenman A, Svahn F, Hojjat-Farsangi M, et al (2019) Molecular Profiling of Pheochromocytoma and Abdominal Paraganglioma Stratified by the PASS Algorithm Reveals Chromogranin B as Associated With Histologic Prediction of Malignant Behavior. Am J Surg Pathol 43:409–421. https://doi.org/10.1097/PAS.0000000000001190

    Article  PubMed  Google Scholar 

  171. Körner M, Waser B, Schonbrunn A, et al (2012) Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am J Surg Pathol 36:242–252. https://doi.org/10.1097/PAS.0b013e31823d07f3

    Article  PubMed  PubMed Central  Google Scholar 

  172. Koussounadis A, Langdon SP, Um IH, et al (2015) Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5:10775. https://doi.org/10.1038/srep10775

    Article  PubMed  PubMed Central  Google Scholar 

  173. Pacak K, Eisenhofer G, Tischler AS (2020) Phaeochromocytoma - advances through science, collaboration and spreading the word. Nat Rev Endocrinol 16:621–622. https://doi.org/10.1038/s41574-020-00413-w

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the invitation of the Editor-in-chief, Dr. O. Mete.

Author information

Authors and Affiliations

Authors

Contributions

T. G. Papathomas, D. P.D. Suurd, A.K. Lam and R. R. de Krijger drafted the design of the work; T. G. Papathomas and D. P.D. Suurd performed the literature search and drafted the initial text; K. Pacak and M. R. Vriens criticised the manuscript;

A. K. Lam and R. R. de Krijger and A.S. Tischler gave input on the concepts and finalised the manuscript; all authors contributed to the final manuscript.

Corresponding authors

Correspondence to Alfred K. Lam or Ronald R. de Krijger.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

All authors consent to participate in this review.

Consent for Publication

All authors consent to the publication of this review.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papathomas, T.G., Suurd, D.P.D., Pacak, K. et al. What Have We Learned from Molecular Biology of Paragangliomas and Pheochromocytomas?. Endocr Pathol 32, 134–153 (2021). https://doi.org/10.1007/s12022-020-09658-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-020-09658-7

Keywords

Navigation