Skip to main content

Advertisement

Log in

MALAT1 Long Non-coding RNA Expression in Thyroid Tissues: Analysis by In Situ Hybridization and Real-Time PCR

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) are important for transcription and for epigenetic or posttranscriptional regulation of gene expression and may contribute to carcinogenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), an lncRNA involved in the regulation of the cell cycle, cell proliferation, and cell migration, is known to be deregulated in multiple cancers. Here, we analyzed the expression of MALAT1 on 195 cases of benign and malignant thyroid neoplasms by using tissue microarrays for RNA in situ hybridization (ISH) and real-time PCR. MALAT1 is highly expressed in normal thyroid (NT) tissues and thyroid tumors, with increased expression during progression from NT to papillary thyroid carcinomas (PTCs) but is downregulated in poorly differentiated thyroid cancers (PDCs) and anaplastic thyroid carcinomas (ATCs) compared to NT. Induction of epithelial to mesenchymal transition (EMT) by transforming growth factor (TGF)-beta in a PTC cell line (TPC1) led to increased MALAT1 expression, supporting a role for MALAT1 in EMT in thyroid tumors. This is the first ISH study of MALAT1 expression in thyroid tissues. It also provides the first piece of evidence suggesting MALAT1 downregulation in certain thyroid malignancies. Our findings support the notion that ATCs may be molecularly distinct from low-grade thyroid malignancies and suggest that MALAT1 may function both as an oncogene and as a tumor suppressor in different types of thyroid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–580.

    Article  CAS  PubMed  Google Scholar 

  2. Livolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol. 2011;24(Suppl 2):S1–S9.

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Wu Z, Fu X, Han W. Long Noncoding RNAs: Insights from Biological Features and Functions to Diseases. Med Res Rev. 2013;33(3):517–553.

    Article  PubMed  Google Scholar 

  4. He H, Nagy R, Liyanarachchi S, Jiao H, Li W, Suster S, et al. A Susceptibility Locus for Papillary Thyroid Carcinoma on Chromosome 8q24. Cancer Res. 2009;69(2):625–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He H, Li W, Liyanarachchi S, Jendrzejewski J, Srinivas M, Davuluri R V, et al. Genetic Predisposition to Papillary Thyroid Carcinoma: Involvement of FOXE1, TSHR, and a Novel lincRNA Gene, PTCSC2. J Clin Endocrinol Metab. 2015;100(1):E164–E172.

    Article  CAS  PubMed  Google Scholar 

  6. Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci U S A. 2012;109(22):8646–8651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang R, Hardin H, Chen J, Guo Z, Lloyd R V. Non-Coding RNAs in Thyroid Cancer. Endocr Pathol. 2016;27(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng H, Wang M, Jiang L, Chu H, Hu J, Ning J, et al. BRAF-activated Long Non-coding RNA Modulates Papillary Thyroid Carcinoma Cell Proliferation through Regulating Thyroid Stimulating Hormone Receptor. Cancer Res Treat. 2015;

  9. Zhou Q, Chen J, Feng J, Wang J. Long noncoding RNA PVT1 modulates thyroid cancer cell proliferation by recruiting EZH2 and regulating thyroid-stimulating hormone receptor (TSHR). Tumour Biol. 2015;

  10. Ma X-Y, Wang J-H, Wang J-L, Ma CX, Wang X-C, Liu F-S. Malat1 as an evolutionarily conserved lncRNA, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomics. 2011;16(676).

  11. Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, et al. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol. 2012;26(10):54–61.

    PubMed  PubMed Central  Google Scholar 

  12. Guo Z, Hardin H, Montemayor-Garcia C, Asioli S, Righi A, Maletta F, et al. In Situ Hybridization Analysis of miR-146b-5p and miR-21 in Thyroid Nodules: Diagnostic Implications. Endocr Pathol. 2015;26(2):157–163.

    Article  CAS  PubMed  Google Scholar 

  13. Huang W, Eickhoff JC, Mehraein-Ghomi F, Church DR, Wilding G, Basu HS. Expression of spermidine/spermine N1-acetyl transferase (SSAT) in human prostate tissues is related to prostate cancer progression and metastasis. Prostate. 2015;75(11):1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hardin H, Guo Z, Shan W, Montemayor-Garcia C, Asioli S, Yu XM, et al. The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am J Pathol. 2014;184(8):2342–2354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hardin H, Yu X-M, Harrison AD, Larrain C, Zhang R, Chen J, et al. Generation of Novel Thyroid Cancer Stem-Like Cell Clones Effects of Resveratrol and Valproic Acid. Am J Pathol. 2016;186(6):1662–1673.

    Article  CAS  PubMed  Google Scholar 

  16. Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res. 2015;75(7):1322–1331.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Z, Weaver DL, Olsen D, Dekay J, Peng Z, Ashikaga T, et al. Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. J Clin Pathol. 2016;69(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  18. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson, L. D. R, et al. Nomenclature Revision for Encapsulated Follicular Variant of Papillary Thyroid Carcinoma A Paradigm Shift to Reduce Overtreatment of Indolent Tumors. JAMA Oncol. 2016;2(8):1023–1029. doi: 10.1001/jamaoncol.2016.0386.

    Article  PubMed  Google Scholar 

  19. Al-Khalaf HH, Aboussekhra A. MicroRNA-141 and microRNA-146b-5p inhibit the prometastatic mesenchymal characteristics through the RNA-binding protein AUF1 targeting the transcription factor ZEB1 and the protein kinase AKT. J Biol Chem. 2014;289(45):31433–31447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell. 2014;159(3):676–690.

    Article  Google Scholar 

  21. Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Braun J, Hoang-Vu C, Dralle H, Hutelmaier S. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene. 2010;29(29):4237–4244.

    Article  CAS  PubMed  Google Scholar 

  23. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26(54):7590–7595.

    Article  CAS  PubMed  Google Scholar 

  24. Huang J-K, Ma L, Song W-H, Lu B-Y, Huang Y-B, Dong H-M, et al. MALAT1 promotes the proliferation and invasion of thyroid cancer cells via regulating the expression of IQGAP1. Biomed Pharmacother. 2016;83:1–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We kindly thank Dr. Daniel T. Ruan (Brigham and Women’s Hospital, Boston, MA) for the TPC1 cell line and the staffs of the Translational Research in Pathology (TRIP) (University of Wisconsin Carbone Cancer Center Cancer Center Support Grant P30 CA014520) for their services. Dr. Ranran Zhang received a research grant from the Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd.

Ethics declarations

The study was approved by the Institutional Review Board at the University of Wisconsin–Madison.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Presented as a Poster Session at the 105th Meeting of the US and Canadian Academy of Pathology in Seattle, WA, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Hardin, H., Huang, W. et al. MALAT1 Long Non-coding RNA Expression in Thyroid Tissues: Analysis by In Situ Hybridization and Real-Time PCR. Endocr Pathol 28, 7–12 (2017). https://doi.org/10.1007/s12022-016-9453-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-016-9453-4

Keywords

Navigation