Skip to main content

Advertisement

Log in

SparseTracer: the Reconstruction of Discontinuous Neuronal Morphology in Noisy Images

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Digital reconstruction of a single neuron occupies an important position in computational neuroscience. Although many novel methods have been proposed, recent advances in molecular labeling and imaging systems allow for the production of large and complicated neuronal datasets, which pose many challenges for neuron reconstruction, especially when discontinuous neuronal morphology appears in a strong noise environment. Here, we develop a new pipeline to address this challenge. Our pipeline is based on two methods, one is the region-to-region connection (RRC) method for detecting the initial part of a neurite, which can effectively gather local cues, i.e., avoid the whole image analysis, and thus boosts the efficacy of computation; the other is constrained principal curves method for completing the neurite reconstruction, which uses the past reconstruction information of a neurite for current reconstruction and thus can be suitable for tracing discontinuous neurites. We investigate the reconstruction performances of our pipeline and some of the best state-of-the-art algorithms on the experimental datasets, indicating the superiority of our method in reconstructing sparsely distributed neurons with discontinuous neuronal morphologies in noisy environment. We show the strong ability of our pipeline in dealing with the large-scale image dataset. We validate the effectiveness in dealing with various kinds of image stacks including those from the DIADEM challenge and BigNeuron project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects. Neuroinformatics, 9(2–3), 181–191.

    Article  PubMed  Google Scholar 

  • Bas, E., Erdogmus, D., Draft, R. W., & Lichtman, J. W. (2012). Local tracing of curvilinear structures in volumetric color images: application to the Brainbow analysis. Journal of Visual Communication and Image Representation, 23, 1260–1271.

    Article  Google Scholar 

  • Bria A, Iannello G, Peng H. (2015). An open-source VAA3D plugin for real-time 3D visualization of terabyte-sized volumetric images. 2015 I.E. 12th International Symposium on Biomedical Imaging (ISBI). IEEE, 2015: 520–523.

  • Brown, K., Barrionuevo, G., Canty, A., De Paola, V., Hirsch, J., Jefferis, G., et al. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 9(2), 143–157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Xiao, H., Liu, T., & Peng, H. (2015). SmartTracing: self-learning-based neuron reconstruction. Brain Informatics, 2, 135–144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, A.R., Roysam, B. & Turner, J.N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. J Microsc, 173, 103–114.

  • Donohue, D. E., & Ascoli, G. A. (2011). Automated reconstruction of neuronal morphology: an overview. Brain Research Reviews, 67(1–2), 94–102.

    Article  PubMed  Google Scholar 

  • Gala, R., Chapeton, J., Jitesh, J., Bhavsar, C., & Stepanyants, A. (2014). Active learning of neuron morphology for accurate automated tracing of neurites. Frontiers in Neuroanatomy, 8(37), 1–14.

    Google Scholar 

  • Gong, H., Zeng, S., Yan, C., Lv, X., Yang, Z., Xu, T., Feng, Z., Ding, W., Qi, X., Li, A., Wu, J., & Luo, Q. (2013). Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage, 74, 87–98.

    Article  PubMed  Google Scholar 

  • Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84(406), 502–516.

    Article  Google Scholar 

  • Jefferis, G., & Livet, J. (2012). Sparse and combinatorial neuron labeling. Current Opinion in Neurobiology, 22, 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Jefferis, G., Potter, C., Chan, A., Marin, E., Rohlfing, T., Maurer, C., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell, 128(6), 1187–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josh Huang, Z., & Zeng, H. (2013). Genetic approaches to neural circuits in the mouse. Annual Review of Neuroscience, 36, 183–215.

    Article  PubMed  Google Scholar 

  • Lu, J. (2011). Neuronal tracing for Connectomic studies. Neuroinformatics, 9(2–3), 159–166.

    Article  PubMed  Google Scholar 

  • Luo, L., Callaway, E. M., & Svoboda, K. (2008). Genetic dissection of neural circuits. Neuron, 57(5), 634–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, G., Sui, D., Wang, K., et al. (2015). Neuron anatomy structure reconstruction based on a sliding filter. BMC Bioinformatics, 16(1), 342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meijering, E. (2010). Neuron tracing in perspective. Cytometry Part A, 77A(7), 693–704.

    Article  Google Scholar 

  • Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., & Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PloS One, 8(12), e84–557.

    Article  Google Scholar 

  • Neurolucida (2014). MBF Bioscience: stereology and neuron morphology quantitative analysis. http://www.mbfbioscience.com.

  • Parekh, R., & Ascoli, G. A. (2013). Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron, 77(6), 1017–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Hawrylycz, M., Roskams, J., et al. (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron, 87(2), 252–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Meijering, E., & Ascoli, G. A. (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13, 259–260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan, T., et al. (2013). NeuroGPS: automated localization of neurons for brain circuits using L1minimization model. Scientific Reports, Rep. 3, 1414.

  • Quan, T., et al. (2014). Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model. Scientific Reports, 4, 4970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan, T., et al. (2016). NeuroGPS-Tree: automatic reconstruction of a large-scale neuronal population with dense neurites. Nature Methods, 13(1), 51–54.

  • Radojevie, M., Smal, I. & Meijering, E. (2015). Automated neuron morphology reconstruction using fuzzy-logic detection and Bayesian tracing algorithms. Biomedical Imaging (ISBI), 2015 I.E. 12th International Symposium on, 885–888.

  • Rodriguez, A., Ehlenberger, D., Hof, P., & Wearne, S. (2006). Rayburst sampling, an algorithm for automated three- dimensional shape analysis from laser scanning microscopy images. Nature Protocols, 1(4), 2152–2161.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, A., Ehlenberger, D., Hof, P., & Wearne, S. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotolo, T., Smallwood, P., Williams, J., & Nathans, J. (2008). Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology. PloS One, 3(12), 1–13.

    Article  Google Scholar 

  • Santamaría-Pang, A., Hernandez-Herrera, P., Papadakis, M., Saggau, P., & Kakadiaris, A. I. (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3D tubular models. Neuroinformatics, 13(3), 297–320.

    Article  PubMed  Google Scholar 

  • Schwarz, L., & Luo, L. (2015). Organization of the Locus coeruleus-norepinephrine system. Current Biology, 25(21), 1051–1056.

    Article  Google Scholar 

  • Silvestri, L., Bria, A., Sacconi, L., Iannello, G., & Pavone, F. (2012). Confocal light sheet microscopy: micron-scale neuroanatomy of the entire mouse brain. Optics Express, 20(18), 20582–20598.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, R., Li, Q., Zhou, X., Lu, J., Lichtman, J., & Wong, S. (2010). Reconstruction of the neuromuscular junction connectome. Bioinformatics, 26(12), i64–i70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turetken, E., Benmansour, F. & Fua, P. (2012). Automated reconstruction of tree structures using path classifiers and mixed integer programming. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) (pp. 566–573). Rhode Island.

  • Turetken, E., Benmansour, F., Andres, B., Pfister, H. & Fua, P. (2013). Reconstructing loopy curvilinear structures using integer programming. In Proceedings of the IEEE, CVPR (pp. 1822–1829). Portland.

  • Turetken, E., Benmansour, F., Andres, B., Głowacki, P. &Pfister, H. (2014). Reconstructing Curvilinear Networks using Path Classifiers and Integer Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence.

  • Wang, Y., Narayanaswamy, A. & Roysam, B. (2011a). Novel 4-D open-curve active contour and curve completion approach for automated tree structure extraction. In Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE (pp. 1105–1112). Colorado Springs.

  • Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011b). A broadly applicable 3-D neuron tracing method based on open curve snake. Neuroinformatics, 9(2–3), 193–217.

    Article  PubMed  Google Scholar 

  • Wilt, B. A., Burns, L. D., Wei Ho, E. T., Ghosh, K. K., Mukamel, E. A., & Schnitzer, M. J. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29(11), 1448–1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, H., Zhou, Z., Zhu, M., Lv, X., Li, A., Li, S., Li, L., Yang, T., Wang, S., Yang, Z., Xu, T., Luo, Q., Gong, H., & Zeng, S. (2014). Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging. Nature Communications, 5, 4992.

    Article  Google Scholar 

  • Yang, J., Gonzalez-Bellido, P. T., & Peng, H. (2013). A distance-field based automatic neuron tracing method. BMC Bioinformatics, 14(1), 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Zheng, T., Shang, Z., Wang, X., Lv, X., Yuan, J., & Zeng, S. (2015). Rapid imaging of large tissues using high-resolution stage-scanning microscopy. Biomedical Optics Express, 6(5), 1867–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, X., Trachtenberg, J., Potter, S., & Roysam, B. (2009). MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7, 213–232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, T., Xie, J., Amat, F., Clack, F., Ahammad, P., Peng, H., Long, F., & Myers, E. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9(2–3), 247–261.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, T., et al. (2013). Visualization of brain circuits using two-photon fluorescence micro-optical sectioning tomography. Optics Express, 21(8), 9839–9850.

    Article  PubMed  Google Scholar 

  • Zhou, Z., Sorensen, S. & Peng, H. (2015).Neuron crawler: an automatic tracing algorithm for very large neuron images, Proc. of IEEE 2015 International Symposiumon Biomedical Imaging: From Nano to Macro, 870–874.

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grant No. 91232306, Grant No. 61205196), National Key Scientific Instrument & Equipment Development Program of China (Grant No. 2012YQ030260) and Science Fund for Creative Research Group of China (Grant No. 61121004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Gong or Shaoqun Zeng.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhou, H., Quan, T. et al. SparseTracer: the Reconstruction of Discontinuous Neuronal Morphology in Noisy Images. Neuroinform 15, 133–149 (2017). https://doi.org/10.1007/s12021-016-9317-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-016-9317-6

Keywords

Navigation