Skip to main content

Advertisement

Log in

Correlation between thyroid function, sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease in euthyroid subjects with newly diagnosed type 2 diabetes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

To estimate the prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) and to evaluate the associations between thyroid parameters, MAFLD and liver fibrosis in euthyroid patients with newly diagnosed type 2 diabetes mellitus (T2DM).

Methods

Overall, 776 patients with newly diagnosed T2DM and 120 subjects without diabetes were included. All the participants were euthyroid, and were categorized as non-MAFLD and MAFLD. Demographic information, biochemical parameters, and serum thyroid hormones were collected. The thyroid hormone sensitivity indices were calculated. MAFLD was defined according to abdominal ultrasound and clinical manifestations. Noninvasive fibrosis indices were calculated to identify advanced liver fibrosis.

Results

The prevalence of MAFLD was significantly higher in patients with T2DM than in subjects without diabetes. Levels of free triiodothyronine (FT3) and FT3 to free thyroxine (FT4) ratio were significantly higher in subjects with MAFLD. In patients with T2DM, levels of thyroid stimulating hormone (TSH), Thyroid feedback quantile-based index (TFQIFT3) calculated using FT3 and TSH, thyrotroph T3 resistance index (TT3RI) and thyrotroph T4 resistance index (TT4RI) were significantly higher in subjects with MAFLD. The prevalence of MAFLD increased with the rise of FT3, FT3/FT4, TSH, and sensitivity to thyroid hormone indices (TFQIFT3, TT3RI, and TT4RI). But significant correlations were not found between thyroid hormones, sensitivity to thyroid hormones and MAFLD, after adjustment for BMI and HOMA-IR. The incidence of advanced fibrosis tended to increase as the rise of TSH and sensitivity to thyroid hormone indices (TFQIFT3, TT3RI, TT4RI, and TSHI).

Conclusion

MAFLD was prevalent in euthyroid patients with newly diagnosed T2DM. Higher normal FT3, TSH and impaired sensitivity to thyroid hormones are associated with increased incidence of MAFLD, being dependent on other metabolic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Eslam, A.J. Sanyal, J. George; International consensus P, MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158(7), 1999–2014.e1 (2020). https://doi.org/10.1053/j.gastro.2019.11.312

    Article  CAS  PubMed  Google Scholar 

  2. M. Eslam, P.N. Newsome, S.K. Sarin et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J. Hepatol. 73(1), 202–209 (2020). https://doi.org/10.1016/j.jhep.2020.03.039

    Article  PubMed  Google Scholar 

  3. G.E.H. Lim, A. Tang, C.H. Ng et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin. Gastroenterol. Hepatol. S1542-3565(21), 01276–3 (2021). https://doi.org/10.1016/j.cgh.2021.11.038

    Article  Google Scholar 

  4. A.M. Diehl, C. Day, Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N. Engl. J. Med. 377(21), 2063–2072 (2017). https://doi.org/10.1056/NEJMra1503519

    Article  CAS  PubMed  Google Scholar 

  5. C.H. Ng, D.Q. Hunag, M.H. Nguyen, NAFLD versus MAFLD: prevalence, outcomes and implications of a change in name. Clin. Mol. Hepatol. 28(4), 790–801 (2022). https://doi.org/10.3350/cmh.2022.0070

    Article  PubMed  PubMed Central  Google Scholar 

  6. H. Kim, C.J. Lee, S.H. Ahn, K.S. Lee, B.K. Lee, S.J. Baik, S.U. Kim, J.I. Lee, MAFLD predicts the risk of cardiovascular disease better than NAFLD in asymptomatic subjects with health check-ups. Dig. Dis. Sci. 67(10), 4919–4928 (2022). https://doi.org/10.1007/s10620-022-07508-6

    Article  CAS  PubMed  Google Scholar 

  7. Q.M. Anstee, G. Targher, C.P. Day, Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10(6), 330–344 (2013). https://doi.org/10.1038/nrgastro.2013.41

    Article  CAS  PubMed  Google Scholar 

  8. E. Piantanida, S. Ippolito, D. Gallo, E. Masiello, P. Premoli, C. Cusini, S. Rosetti, J. Sabatino, S. Segato, F. Trimarchi, L. Bartalena, M.L. Tanda, The interplay between thyroid and liver: implications for clinical practice. J. Endocrinol. Investig. 43(7), 885–899 (2020). https://doi.org/10.1007/s40618-020-01208-6

    Article  CAS  Google Scholar 

  9. H.C. Chi, C.Y. Chen, M.M. Tsai, C.Y. Tsai, K.H. Lin, Molecular functions of thyroid hormones and their clinical significance in liver-related diseases. Biomed. Res. Int. 2013, 601361 (2013). https://doi.org/10.1155/2013/601361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. Biondi, G.J. Kahaly, R.P. Robertson, Thyroid dysfunction and diabetes mellitus: two closely associated disorders. Endocr. Rev. 40(3), 789–824 (2019). https://doi.org/10.1210/er.2018-00163

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. Laclaustra, B. Moreno-Franco, J.M. Lou-Bonafonte, R. Mateo-Gallego, J.A. Casasnovas, P. Guallar-Castillon, A. Cenarro, F. Civeira, Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Diabetes Care 42(2), 303–310 (2019). https://doi.org/10.2337/dc18-1410

    Article  CAS  PubMed  Google Scholar 

  12. S. Lai, J. Li, Z. Wang, W. Wang, H. Guan, Sensitivity to thyroid hormone indices are closely associated with NAFLD. Front. Endocrinol.12, 766419 (2021). https://doi.org/10.3389/fendo.2021.766419

    Article  Google Scholar 

  13. Y. Sun, D. Teng, L. Zhao, X. Shi, Y. Li, Z. Shan, W. Teng, Impaired sensitivity to thyroid hormones is associated with hyperuricemia, obesity, and cardiovascular disease risk in subjects with subclinical hypothyroidism. Thyroid 32(4), 376–384 (2022). https://doi.org/10.1089/thy.2021.0500

    Article  CAS  PubMed  Google Scholar 

  14. B. Liu, Z. Wang, J. Fu, H. Guan, Z. Lyu, W. Wang, Sensitivity to thyroid hormones and risk of prediabetes: a cross-sectional study. Front. Endocrinol. 12, 657114 (2021). https://doi.org/10.3389/fendo.2021.657114

    Article  Google Scholar 

  15. C. Wang, Q. Niu, H. Lv, Q. Li, Y. Ma, J. Tan, C. Liu, Elevated TPOAb is a strong predictor of autoimmune development in patients of type 2 diabetes mellitus and non-alcoholic fatty liver disease: a case-control study. Diabetes Metab. Syndr. Obes. 13, 4369–4378 (2020). https://doi.org/10.2147/DMSO.S280231

    Article  PubMed  PubMed Central  Google Scholar 

  16. X. Zhang, J. Zhang, Y. Dai, J. Qin, Serum thyroid hormones levels are significantly associated with nonalcoholic fatty liver disease in euthyroid chinese population. Clin. Lab 66(10), 2047–2053 (2020). https://doi.org/10.7754/Clin.Lab.2020.200219

    Article  CAS  Google Scholar 

  17. K.G. Alberti, P.Z. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med 15(7), 539–553 (1998). https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  18. X. Li, Z.G. Zhou, H.Y. Qi, X.Y. Chen, G. Huang, Replacement of insulin by fasting C-peptide in modified homeostasis model assessment to evaluate insulin resistance and islet beta cell function. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 29(4), 419–423 (2004)

    CAS  PubMed  Google Scholar 

  19. Z. Hassan-Smith, M. Hewison, N. Gittoes, Vitamin D supplementation and prevention of type 2 diabetes. N. Engl. J. Med. 381(18), 1784–1785 (2019). 10.1056/NEJMc1912185

    Article  PubMed  Google Scholar 

  20. A. Jostel, W.D. Ryder, S.M. Shalet, The use of thyroid function tests in the diagnosis of hypopituitarism: definition and evaluation of the TSH Index. Clin. Endocrinol. 71(4), 529–534 (2009). https://doi.org/10.1111/j.1365-2265.2009.03534.x

    Article  CAS  Google Scholar 

  21. H. Yagi, J. Pohlenz, Y. Hayashi, A. Sakurai, S. Refetoff, Resistance to thyroid hormone caused by two mutant thyroid hormone receptors beta, R243Q and R243W, with marked impairment of function that cannot be explained by altered in vitro 3,5,39-triiodothyroinine binding affifinity. J. Clin. Endocrinol. Metab. 82(5), 1608–1614 (1997). https://doi.org/10.1210/jcem.82.5.3945

    Article  CAS  PubMed  Google Scholar 

  22. S. Yang, S. Lai, Z. Wang, A. Liu, W. Wang, H. Guan, Thyroid Feedback Quantile-based Index correlates strongly to renal function in euthyroid individuals. Ann. Med. 53(1), 1945–1955 (2021). https://doi.org/10.1080/07853890.2021.1993324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W. He, X. An, L. Li, X. Shao, Q. Li, Q. Yao, J.A. Zhang, Relationship between hypothyroidism and non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front. Endocrinol. 8, 335 (2017). https://doi.org/10.3389/fendo.2017.00335

    Article  Google Scholar 

  24. P. Angulo, J.M. Hui, G. Marchesini et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45(4), 846–854 (2007). https://doi.org/10.1002/hep.21496

    Article  CAS  PubMed  Google Scholar 

  25. C.T. Wai, J.K. Greenson, R.J. Fontana, J.D. Kalbflfleisch, J.A. Marrero, H.S. Conjeevaram, A.S. Lok, A simple noninvasive index can predict both signifificant fifibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38(2), 518–526 (2003). https://doi.org/10.1053/jhep.2003.50346

    Article  PubMed  Google Scholar 

  26. R.K. Sterling, E. Lissen, N. Clumeck et al. Development of a simple noninvasive index to predict significant fifibrosis in patients with HIV/HCV coinfection. Hepatology 43(6), 1317–1325 (2006). https://doi.org/10.1002/hep.21178

    Article  CAS  PubMed  Google Scholar 

  27. L. Castera, M. Friedrich-Rust, R. Loomba, Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 156(5), 1264–1281.e4 (2019). https://doi.org/10.1053/j.gastro.2018.12.036

    Article  PubMed  Google Scholar 

  28. Z.M. Younossi, R. Loomba, Q.M. Anstee, M.E. Rinella, E. Bugianesi, G. Marchesini, Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 68(1), 349–360 (2018). https://doi.org/10.1002/hep.29721

    Article  PubMed  Google Scholar 

  29. Y.L. Wu, R. Kumar, M.F. Wang, M. Singh, J.F. Huang, Y.Y. Zhu, S. Lin, Validation of conventional non-invasive fibrosis scoring systems in patients with metabolic associated fatty liver disease. World J. Gastroenterol. 27(34), 5753–5763 (2021). https://doi.org/10.3748/wjg.v27.i34.5753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Rigor, A. Diegues, J. Presa, P. Barata, D. Martins-Mendes, Noninvasive fibrosis tools in NAFLD: validation of APRI, BARD, FIB-4, NAFLD fibrosis score, and Hepamet fibrosis score in a Portuguese population. Postgrad. Med. 134(4), 435–440 (2022). https://doi.org/10.1080/00325481.2022.2058285

    Article  CAS  PubMed  Google Scholar 

  31. G.C. Farrell, V.W. Wong, S. Chitturi, NAFLD in Asia–as common and important as in the West. Nat. Rev. Gastroenterol. Hepatol. 10(5), 307–318 (2013). https://doi.org/10.1038/nrgastro.2013.34

    Article  CAS  PubMed  Google Scholar 

  32. A.S. Butt, S. Hamid, Z. Haider, F. Sharif, M. Salih, S. Awan, A.A. Khan, J. Akhter, Nonalcoholic fatty liver diseases among recently diagnosed patients with diabetes mellitus and risk factors. Euroasian J. Hepatogastroenterol 9(1), 9–13 (2019). https://doi.org/10.5005/jp-journals-10018-1288

    Article  PubMed  PubMed Central  Google Scholar 

  33. F. Wang, R. Zheng, L. Li, M. Xu, J. Lu, Z. Zhao, M. Li, T. Wang, S. Wang, Y. Bi, Y. Xu, G. Ning, W. Cai, Novel subgroups and chronic complications of diabetes in middle-aged and elderly chinese:a prospective cohort study. Front. Endocrinol. 12, 802114 (2022). https://doi.org/10.3389/fendo.2021.802114

    Article  Google Scholar 

  34. J. Zeng, L. Qin, Q. Jin, R.X. Yang, G. Ning, Q. Su, Z. Yang, J.G. Fan, Prevalence and characteristics of MAFLD in Chinese adults aged 40 years or older: a community-based study. Hepatobiliary Pancreat. Dis. Int. 21(2), 154–161 (2022). https://doi.org/10.1016/j.hbpd.2022.01.006

    Article  PubMed  Google Scholar 

  35. C. Lanbenz, K. Kostev, A. Armandi, P.R. Galle, J.M. Schattenberg, Impact of thyroid disorders on the incidence of non‐alcoholic fatty liver disease in Germany. U. Eur. Gastroenterol. J. 9(7), 829–836 (2021). https://doi.org/10.1002/ueg2.12124

    Article  CAS  Google Scholar 

  36. Z. Guo, M. Li, B. Han, X. Qi, Association of non-alcoholic fatty liver disease with thyroid function: a systematic review and meta-analysis. Dig. Liver Dis. 50(11), 1153–1162 (2018). https://doi.org/10.1016/j.dld.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  37. T. Kizivat, I. Maric, D. Mudri, I.B. Curcic, D. Primorac, M. Smolic, Hypothyroidism and nonalcoholic fatty liver disease: pathophysiological associations and therapeutic implications. J. Clin. Transl. Hepatol. 8(3), 347–353 (2020). https://doi.org/10.14218/JCTH.2020.00027

    Article  PubMed  PubMed Central  Google Scholar 

  38. Y. Gu, X. Wu, Q. Zhang, L. Liu, G. Meng, H. Wu, S. Zhang, Y. Wang, T. Zhang, X. Wang, S. Sun, X. Wang, M. Zhou, Q. Jia, K. Song, K. Niu, High-normal thyroid function predicts incident nonalcoholic fatty liver disease among middle-aged and older euthyroid subjects. J. Gerontol. A. Biol. Sci. Med. Sci. 77(1), 197–203 (2022). https://doi.org/10.1093/gerona/glab037

    Article  CAS  PubMed  Google Scholar 

  39. D. Ma, J. Zeng, B. Huang, F. Yan, J. Ye, Y. Chen, X. Zeng, X. Zheng, F. Xiao, M. Lin, C. Liu, Z. Li, Independent associations of thyroid-related hormones with hepatic steatosis and insulin resistance in euthyroid overweight/obese Chinese adults. BMC Gastroenterol. 21(1), 431 (2021). https://doi.org/10.1186/s12876-021-02011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Liu, W. Wang, X. Yu, X. Qi, Thyroid function and risk of non-alcoholic fatty liver disease in euthyroid subjects. Ann. Hepatol. 17(5), 779–788 (2018). https://doi.org/10.5604/01.3001.0012.3136

    Article  CAS  PubMed  Google Scholar 

  41. Y. Zhang, J. Li, H. Liu, Correlation between the thyroid hormone levels and nonalcoholic fatty liver disease in type 2 diabetic patients with normal thyroid function. BMC Endocr. Disord. 22(1), 144 (2022). https://doi.org/10.1186/s12902-022-01050-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Du, S. Chai, X. Zhao, J. Sun, X. Zhang, L. Huo, Association between thyroid hormone levels and advanced liver fibrosis in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease. Diabetes Metab. Syndr. Obes. 14, 2399–2406 (2021). https://doi.org/10.2147/DMSO.S313503

    Article  PubMed  PubMed Central  Google Scholar 

  43. W. Guo, P. Qin, X. Li, J. Wu, J. Lu, W. Zhu, Q. Diao, N. Xu, Q. Zhang, Free triiodothyronine is associated with hepatic steatosis and liver stiffness in euthyroid chinese adults with non-alcoholic fatty liver disease. Front. Endocrinol. 12, 711956 (2021). https://doi.org/10.3389/fendo.2021.711956

    Article  Google Scholar 

  44. C. Xu, L. Xu, C. Yu, M. Miao, Y. Li, Association between thyroid function and nonalcoholic fatty liver disease in euthyroid elderly Chinese. Clin. Endocrinol. 75(2), 240–246 (2011). https://doi.org/10.1111/j.1365-2265.2011.04016.x

    Article  CAS  Google Scholar 

  45. K. Tahara, T. Akahane, T. Namisaki et al. Thyroid-Stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease. JGH Open 4(3), 400–404 (2019). https://doi.org/10.1002/jgh3.12264

    Article  PubMed  PubMed Central  Google Scholar 

  46. Y. Tan, X. Tang, P. Mu, Y. Yang, M. Li, Y. Nie, H. Li, Y. Zhu, Y. Chen, High-normal serum thyrotropin levels increased the risk of non-alcoholic fatty liver disease in euthyroid subjects with type 2 diabetes. Diabetes Metab. Syndr. Obes. 14, 2841–2849 (2021). https://doi.org/10.2147/DMSO.S313224

    Article  PubMed  PubMed Central  Google Scholar 

  47. C. Janovsky, F. Cesena, V. Valente, R. Conceição, R. Santos, M. Bittencourt, Association between thyroid-stimulating hormone levels and non-alcoholic fatty liver disease is not independent from metabolic syndrome criteria. Eur. Thyroid J. 7(6), 302–307 (2018). https://doi.org/10.1159/000492324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. E.H. van den Berg, L.J. van Tienhoven-Wind, M. Amini, T.C. Schreuder, K.N. Faber, H. Blokzijl, R.P. Dullaart, Higher free triiodothyronine is associated with nonAlcoholic fatty liver disease in euthyroid subjects: the Lifelines Cohort Study. Metabolism 67, 62–71 (2017). https://doi.org/10.1016/j.metabol.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  49. M. Ekstedt, H. Hagström, P. Nasr, M. Fredrikson, P. Stål, S. Kechagias, R. Hultcrantz, Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 61(5), 1547–1554 (2015). https://doi.org/10.1002/hep.27368

    Article  CAS  PubMed  Google Scholar 

  50. K. Cusi, A diabetologist’s perspective of non-alcoholic steatohepatitis (NASH): knowledge gaps and future directions. Liver Int 40(Suppl 1), 82–88 (2020). https://doi.org/10.1111/liv.14350

    Article  PubMed  Google Scholar 

  51. Y. Xing, J. Chen, J. Liu, G. Song, H. Ma, Relationship between serum uric acid-to-creatinine ratio and the risk of metabolic-associated fatty liver disease in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 15, 257–267 (2022). https://doi.org/10.2147/DMSO.S350468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. G.P. Martínez-Escudé Alba, A. Costa-Garrido, L. Rodríguez, I. Arteaga, C. Expósito-Martínez, P. Torán-Monserrat, L. Caballería, TSH levels as an independent risk factor for NAFLD and liver fibrosis in the general population. J. Clin. Med. 10(13), 2907 (2021). https://doi.org/10.3390/jcm10132907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. D. Kim, E.R. Yoo, A.A. Li, C.T. Fernandes, S.P. Tighe, G. Cholankeril, B. Hameed, A. Ahmed, Low-normal thyroid function is associated with advanced fibrosis among adults in the United States. Clin. Gastroenterol. Hepatol. 17(11), 2379–2381 (2019). https://doi.org/10.1016/j.cgh.2018.11.024

    Article  PubMed  Google Scholar 

  54. A. Martínez-Escudé, G. Pera, L. Rodríguez, I. Arteaga, C. Expósito-Martínez, P. Torán-Monserrat, L. Caballería, Risk of liver fibrosis according to TSH levels in euthyroid subjects. J. Clin. Med. 10(7), 1350 (2021). https://doi.org/10.3390/jcm10071350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. C. Shao, Q. Cheng, S. Zhang, X. Xiang, Y. Xu, Serum level of free thyroxine is an independent risk factor for non-alcoholic fatty liver disease in euthyroid people. Ann. Palliat. Med. 11(2), 655–662 (2022). https://doi.org/10.21037/apm-21-3890

    Article  PubMed  Google Scholar 

  56. P. Manka, L. Bechmann, J. Best et al. Low free triiodothyronine is associated with advanced fibrosis in patients at high risk for nonalcoholic steatohepatitis. Dig. Dis. Sci. 64(8), 2351–2358 (2019). https://doi.org/10.1007/s10620-019-05687-3

    Article  CAS  PubMed  Google Scholar 

  57. H.J. Kim, S.J. Park, H.K. Park, D.W. Byn, K. Suh, M.H. Yoo, Association of thyroid autoimmunity with nonalcoholic fatty liver disease in euthyroid middle-aged subjects: A population-based study. J. Gastroenterol. Hepatol. 37(8), 1617–1623 (2022). https://doi.org/10.1111/jgh.15865

    Article  CAS  PubMed  Google Scholar 

  58. R. Naguib, A. Fayed, E.Z. Zlkemary, H. Naguib, Evaluation of thyroid function and thyroid autoimmune disease in patients with non-alcoholic fatty liver disease. Clin. Exp. Hepatol. 7(4), 422–428 (2021). https://doi.org/10.5114/ceh.2021.111169

    Article  PubMed  PubMed Central  Google Scholar 

  59. X. Zhang, R. Li, Y. Chen, Y. Dai, L. Chen, L. Qin, X. Cheng, Y. Lu, The role of thyroid hormones and autoantibodies in metabolic dysfunction associated fatty liver disease: TGAB may be a potential protective factor. Front. Endocrinol. 11, 598836 (2020). https://doi.org/10.3389/fendo.2020.598836

    Article  Google Scholar 

  60. J.L. Wemeau, S. Espiard, V. Vlaeminck-Guillem, C. Jaffiol, Different grades of sensitivity to thyroid hormones. Bull. Acad. Natl Med 204(2), 186–197 (2020). https://doi.org/10.1016/j.banm.2019.12.005

    Article  Google Scholar 

  61. S.P. Alonso, S. Valdés, C. Maldonado-Araque, Thyroid hormone resistance index and mortality in euthyroid subjects: Di@bet.es study. Eur. J. Endocrinol. 186(1), 95–103 (2021). https://doi.org/10.1530/EJE-21-0640

    Article  PubMed  Google Scholar 

  62. Z.M. Liu, G. Li, Y. Wu, D. Zhang, S. Zhang, Y.T. Hao, W. Chen, Q. Huang, S. Li, Y. Xie, M. Ye, C. He, P. Chen, W. Pan, Increased central and peripheral thyroid resistance indices during the first half of gestation were associated with lowered risk of gestational diabetes-analyses based on huizhou birth cohort in South China. Front. Endocrinol. 13, 806256 (2022). https://doi.org/10.3389/fendo.2022.806256

    Article  Google Scholar 

  63. L. Mehran, N. Delbari, A. Amouzegar, M. Hasheminia, M. Tohidi, F. Azizi, Reduced sensitivity to thyroid hormone is associated with diabetes and hypertension. J. Clin. Endocrinol. Metab. 107(1), 167–176 (2022). https://doi.org/10.1210/clinem/dgab646

    Article  PubMed  Google Scholar 

  64. Y. Wang, D. He, C. Fu, X. Dong, F. Jiang, M. Su, Q. Xu, P. Huang, N. Wang, Y. Chen, Q. Jiang, Thyroid Function Changes and Pubertal Progress in Females: A Longitudinal Study in Iodine-Sufficient Areas of East China. Front. Endocrinol. (Lausanne) 12, 653680 (2021). https://doi.org/10.3389/fendo.2021.653680

    Article  PubMed  Google Scholar 

  65. R. Li, L. Zhou, C. Chen, X. Han, M. Gao, X. Cheng, J. Li, Sensitivity to thyroid hormones is associated with advanced fibrosis in euthyroid patients with non-alcoholic fatty liver disease: A cross-sectional study. Dig. Liver Dis. S1590-8658(22), 00560–00566 (2022). https://doi.org/10.1016/j.dld.2022.06.021

    Article  CAS  Google Scholar 

  66. X. Nie, Y. Xu, X. Ma, Y. Xiao, Y. Wang, Y. Bao, Association between abdominal fat distribution and free triiodothyronine in a euthyroid population. Obes. Facts. 13(3), 358–366 (2020). https://doi.org/10.1159/000507709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. D. Urrunaga-Pastor, M. Guarnizo-Poma, E. Moncada-Mapelli et al. High free triiodothyronine and free-triiodothyronine-to-free-thyroxine ratio levels are associated with metabolic syndrome in a euthyroid population. Diabetes Metab. Syndr. 12(2), 155–161 (2018). https://doi.org/10.1016/j.dsx.2017.12.003

    Article  PubMed  Google Scholar 

  68. H. Bilgin, Ö. Pirgon, Thyroid function in obese children with non-alcoholic fatty liver disease. J. Clin. Res. Pediatr. Endocrinol. 6(3), 152–157 (2014). https://doi.org/10.4274/Jcrpe.1488

    Article  PubMed  PubMed Central  Google Scholar 

  69. F.Y. Gökmen, S. Ahbab, H.E. Ataoğlu, B.C. Türker, F. Çetin, F. Türker, R.Y. Mamaç, M. Yenigün, FT3/FT4 ratio predicts non-alcoholic fatty liver disease independent of metabolic parameters in patients with euthyroidism and hypothyroidism. Clinics 71(4), 221–225 (2016). https://doi.org/10.6061/clinics/2016(04)08

    Article  PubMed  PubMed Central  Google Scholar 

  70. S.M.M. Hussein, R.M. AbdElmageed, The relationship between type 2 diabetes mellitus and related thyroid diseases. Cureus 13(12), e20697 (2021). https://doi.org/10.7759/cureus.20697

    Article  Google Scholar 

  71. D. Ma, J. Zeng, B. Huang et al. Independent associations of thyroid-related hormones with hepatic steatosis and insulin resistance in euthyroid overweight/obese Chinese adults. BMC Gastroenterol. 21(1), 431 (2021). https://doi.org/10.1186/s12876-021-02011-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. S. Temizkan, B. Balaforlou, A. Ozderya et al. Effects of thyrotrophin, thyroid hormones and thyroid antibodies on metabolic parameters in a euthyroid population with obesity. Clin. Endocrinol. 85(4), 616–623 (2016). https://doi.org/10.1111/cen.13095

    Article  CAS  Google Scholar 

  73. A.H. Khassawneh, A. Al-Mistarehi, A.M.Z. Alaabdin et al. Prevalence and predictors of thyroid dysfunction among type 2 diabetic patients: a case-control study. Int. J. Gen. Med 13, 803–816 (2020). https://doi.org/10.2147/IJGM.S273900

    Article  PubMed  PubMed Central  Google Scholar 

  74. K. Qin, F. Zhang, Q. Wu et al. Thyroid hormone changes in euthyroid patients with diabetes. Diabetes Metab. Syndr. Obes. 13, 2533–2540 (2020). https://doi.org/10.2147/DMSO.S260039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. L. Mehran, A. Amouzegar, M. Tohidi, M. Moayedi, F. Azizi, Serum free thyroxine concentration is associated with metabolic syndrome in euthyroid subjects. Thyroid 24(11), 1566–1574 (2014). https://doi.org/10.1089/thy.2014.0103

    Article  CAS  PubMed  Google Scholar 

  76. Q. Han, J. Zhang, Y. Wang et al. Thyroid hormones and diabetic nephropathy: an essential relationship to recognize. Nephrology 24(2), 160–169 (2019). https://doi.org/10.1111/nep.13388

    Article  CAS  PubMed  Google Scholar 

  77. Y. Li, M. Yi, X. Deng, W. Li, Y. Chen, X. Zhang, Evaluation of the thyroid characteristics and correlated factors in hospitalized patients with newly diagnosed type 2 diabetes. Diabetes Metab. Syndr. Obes. 15, 873–884 (2022). https://doi.org/10.2147/DMSO.S355727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. A.N. Hollenberg, The role of the thyrotropinreleasing hormone (TRH) neuron as a metabolic sensor. Thyroid 18(2), 131–139 (2008). https://doi.org/10.1089/thy.2007.0251

    Article  CAS  PubMed  Google Scholar 

  79. A. de Moura Souza, R. Sichieri, Association between serum TSH concentration within the normal range and adiposity. Eur. J. Endocrinol. 165(1), 11–15 (2011). https://doi.org/10.1530/EJE-11-0261

    Article  CAS  PubMed  Google Scholar 

  80. I.P. Carneiro, S.A. Elliott, M. Siervo, R. Padwal, S. Bertoli, A. Battezzati, C.M. Prado, Is obesity associated with altered energy expenditure? Adv. Nutr. 7(3), 476–487 (2016). https://doi.org/10.3945/an.115.008755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. M.K. Amin, A.I. Ali, H. Elsayed, Impact of weight reduction on thyroid function and nonalcoholic fatty liver among egyptian adolescents with obesity. Int. J. Endocrinol. 2022, 7738328 (2022). https://doi.org/10.1155/2022/7738328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. P. Juiz-Valiña, M. Cordido, E. Outeiriño-Blanco, S. Pértega, B.M. Varela-Rodríguez, M.J. García-Brao, E. Mena, L. Pena-Bello, S. Sangiao-Alvarellos, F. Cordido, Central resistance to thyroid hormones in morbidly obese subjects is reversed after bariatric surgery-induced weight loss. J. Clin. Med. 9(2), 359 (2020). https://doi.org/10.3390/jcm9020359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Z. Zhang, A. Boelen, P.H. Bisschop, A. Kalsbeek, E. Fliers, Hypothalamic effects of thyroid hormone. Mol. Cell. Endocrinol. 458, 143–148 (2017). https://doi.org/10.1016/j.mce.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  84. E.E. Powell, V.W. Wong, M. Rinella, Non-alcoholic fatty liver disease. Lancet 397(10290), 2212–2224 (2021). https://doi.org/10.1016/S0140-6736(20)32511-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by grant from National Natural Science Foundation of China (grant number 81800726).

Author information

Authors and Affiliations

Authors

Contributions

XZ and WL contributed to the study conception and design. Data collection and analysis were performed by XZ, YC, HY, ZL, JL, ZC, and EZ. The first draft of the manuscript was written by XZ and all authors commented on previous versions of the manuscript. The manuscript was reviewed and revised by WL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wangen Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Since the present study is retrospective and the data are anonymous, individual consent from participant was waived.

Ethics approval

The study was conducted in accordance with the principles of the Declaration of Helsinki and was approved by the Ethics Committee of The Second Affiliated Hospital of Guangzhou Medical University (Approval number 2022-hg-ks-16).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, Y., Ye, H. et al. Correlation between thyroid function, sensitivity to thyroid hormones and metabolic dysfunction-associated fatty liver disease in euthyroid subjects with newly diagnosed type 2 diabetes. Endocrine 80, 366–379 (2023). https://doi.org/10.1007/s12020-022-03279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03279-2

Keywords

Navigation