Skip to main content
Log in

Association between sensitivity to thyroid hormones and dyslipidemia in patients with coronary heart disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Thyroid hormones affect lipid metabolism via central and peripheral regulation. However, there have been few studies on the association between thyroid hormone sensitivity and dyslipidemia. We aimed to investigate the association between thyroid hormone sensitivity and dyslipidemia in patients with coronary heart disease (CHD).

Methods

A total of 31,678 patients with CHD were included in this large multicenter retrospective study. Central thyroid hormone sensitivity was evaluated using the thyroid feedback quantile-based index (TFQI), parametric thyroid feedback quantile-based index (PTFQI), thyroid-stimulating hormone index (TSHI), and thyrotropin thyroxine resistance index (TT4RI); peripheral thyroid hormone sensitivity was assessed by the ratio of free triiodothyronine (FT3)/free thyroxine (FT4). Logistic regression analysis was used to analyze the association between thyroid hormone sensitivity and dyslipidemia.

Results

Among 31,678 participants, 21,648 (68.34%) had dyslipidemia. In the multi-adjusted models, the risk of dyslipidemia was positively correlated with TFQI (odds ratio [OR]: 1.04; 95% confidence interval [CI]: 1.03–1.05), PTFQI (OR: 1.09; 95% CI: 1.06–1.12), TSHI (OR: 1.08; 95% CI: 1.06–1.11), and TT4RI (OR: 1.08; 95% CI: 1.05–1.11). Conversely, the risk of dyslipidemia was negatively correlated with FT3/FT4 (OR: 0.94; 95% CI: 0.92–0.97). In stratified analyses, the association between thyroid hormone sensitivity and dyslipidemia was statistically significant for different sexes, glucose levels, and blood pressure states.

Conclusion

There is a significant association between sensitivity to thyroid hormones and dyslipidemia, regardless of sex, glucose level, or blood pressure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C.B. Newman, M.J. Blaha, J.B. Boord, B. Cariou, A. Chait, H.G. Fein et al. Lipid management in patients with endocrine disorders: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 106(6), e2465 (2021). https://doi.org/10.1210/clinem/dgaa674

    Article  Google Scholar 

  2. Y. Huang, L. Gao, X. Xie, S.C. Tan, Epidemiology of dyslipidemia in Chinese adults: meta-analysis of prevalence, awareness, treatment, and control. Popul Health Metr. 12(1), 28 (2014). https://doi.org/10.1186/s12963-014-0028-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. H. Liu, D. Peng, Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr. Connect 11(2), e210002 (2022). https://doi.org/10.1530/EC-21-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M.J. Ryan Jr, J. Gibson, P. Simmons, E. Stanek, Effectiveness of aggressive management of dyslipidemia in a collaborative-care practice model. Am. J. Cardiol. 91(12), 1427–1431 (2003). https://doi.org/10.1016/s0002-9149(03)00393-x

    Article  PubMed  Google Scholar 

  5. M. Mavromati, F.R. Jornayvaz, Hypothyroidism-associated Dyslipidemia: Potential molecular mechanisms leading to NAFLD. Int J. Mol. Sci. 22(23), 12797 (2021). https://doi.org/10.3390/ijms222312797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Laclaustra, B. Moreno-Franco, J.M. Lou-Bonafonte, R. Mateo-Gallego, J.A. Casasnovas, P. Guallar-Castillon et al. Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Diabetes Care 42(2), 303–310 (2019). https://doi.org/10.2337/dc18-1410

    Article  CAS  PubMed  Google Scholar 

  7. N. Rodondi, W.P. den Elzen, D.C. Bauer, A.R. Cappola, S. Razvi, J.P. Walsh et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304(12), 1365–1374 (2010). https://doi.org/10.1001/jama.2010.1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A.R. Cappola, P.W. Ladenson, Hypothyroidism and atherosclerosis. J. Clin. Endocrinol. Metab. 88(6), 2438–2444 (2003). https://doi.org/10.1210/jc.2003-030398

    Article  CAS  PubMed  Google Scholar 

  9. M. Wang, M. Liu, F. Li, C. Guo, Z. Liu, Y. Pan et al. Gender heterogeneity in dyslipidemia prevalence, trends with age and associated factors in middle age rural Chinese. Lipids Health Dis. 19(1), 135 (2020). https://doi.org/10.1186/s12944-020-01313-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T.S. Mikkola, M. Gissler, M. Merikukka, P. Tuomikoski, O. Ylikorkala, Sex differences in age-related cardiovascular mortality. PLoS One 8(5), e63347 (2013). https://doi.org/10.1371/journal.pone.0063347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. Ittermann, S. Schipf, M. Dörr, B.H. Thuesen, T. Jørgensen, H. Völzke et al. Hyperthyroxinemia is positively associated with prevalent and incident type 2 diabetes mellitus in two population-based samples from Northeast Germany and Denmark. Nutr. Metab. Cardiovasc Dis. 28(2), 173–179 (2018). https://doi.org/10.1016/j.numecd.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  12. B. Liu, Z. Wang, J. Fu, H. Guan, Z. Lyu, W. Wang, Sensitivity to thyroid hormones and risk of prediabetes: a cross-sectional study. Front Endocrinol. 12, 657114 (2021). https://doi.org/10.3389/fendo.2021.657114

    Article  Google Scholar 

  13. L. Chaker, S. Ligthart, T.I. Korevaar, A. Hofman, O.H. Franco, R.P. Peeters et al. Thyroid function and risk of type 2 diabetes: a population-based prospective cohort study. BMC Med 14(1), 150 (2016). https://doi.org/10.1186/s12916-016-0693-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R.S. Barua, N.A. Rigotti, N.L. Benowitz, K.M. Cummings, M.A. Jazayeri, P.B. Morris et al. 2018 ACC expert consensus decision pathway on tobacco cessation treatment: a report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol. 72(25), 3332–3365 (2018). https://doi.org/10.1016/j.jacc.2018.10.027

    Article  PubMed  Google Scholar 

  15. J. Knuuti, W. Wijns, A. Saraste, D. Capodanno, E. Barbato, C. Funck-Brentanoet et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41(3), 407–477 (2020). https://doi.org/10.1093/eurheartj/ehz425

    Article  PubMed  Google Scholar 

  16. Cardiovascular Branch of Chinese Medical Association, Editorial Committee of chinese journal of cardiology, Guide to diagnosis and treatment of chronic angina pectoris. Chin. J. Cardiol. 35(3), 195–206 (2007. https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZHXX200703001&DbName=CJFQ2007

    Google Scholar 

  17. Y.J. Liu, Z. Li, X. Wang, T.Y. Ni, MM, Y.Y. He, R.R. Yang, M.C. Luo, Effects of adjuvant Chinese patent medicine therapy on major adverse cardiovascular events in patients with coronary heart disease angina pectoris: a population-based retrospective cohort study. Acupunct. Herb. Med 2(2), 110–118 (2022). https://doi.org/10.1097/HM9.0000000000000028

    Article  Google Scholar 

  18. A.Z. Fan, W.J. Ruan, S.P. Chou, Re-examining the relationship between alcohol consumption and coronary heart disease with a new lens. Prev. Med 118, 336–343 (2019). https://doi.org/10.1016/j.ypmed.2018.11.022

    Article  PubMed  Google Scholar 

  19. Z. Li, Y. He, S. Wang, L. Li, R. Yang, Y. Liu et al. Association between triglyceride glucose index and carotid artery plaque in different glucose metabolic states in patients with coronary heart disease: a RCSCD-TCM study in China. Cardiovasc Diabetol. 21(1), 38 (2022). https://doi.org/10.1186/s12933-022-01470-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J.M. Flack, B. Adekola, Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med 30(3), 160–164 (2020). https://doi.org/10.1016/j.tcm.2019.05.003

    Article  PubMed  Google Scholar 

  21. C.M. Association, Guideline for primary care of Dyslipidemias: Practice Version (2019). Chin. J. Gen. Pr. 018(005), 417–421 (2019). https://doi.org/10.3760/cma.j.issn.1671-7368.2019.05.004

    Article  Google Scholar 

  22. J.M. Flack, B. Adekola, Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med 30(3), 160–164 (2020). https://doi.org/10.1016/j.tcm.2019.05.003

    Article  PubMed  Google Scholar 

  23. L. Yu, Z. Li, R. Yang, G. Pan, Q. Cheng, Y. He et al. Impaired sensitivity to thyroid hormones is associated with elevated blood glucose in coronary heart disease. Front Endocrinol. (Lausanne) 15, 13–895843 (2022). https://doi.org/10.3389/fendo.2022.895843. Jun

    Article  Google Scholar 

  24. C. Cappelli, M. Rotondi, I. Pirola, B. Agosti, E. Gandossi, U. Valentini et al. TSH-lowering effect of metformin in type 2 diabetic patients: differences between euthyroid, untreated hypothyroid, and euthyroid on L-T4 therapy patients. Diabetes Care 32(9), 1589–1590 (2009). https://doi.org/10.2337/dc09-0273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Yagi, J. Pohlenz, Y. Hayashi, A. Sakurai, S. Refetoff, Resistance to thyroid hormone caused by two mutant thyroid hormone receptors beta, R243Q and R243W, with marked impairment of function that cannot be explained by altered in vitro 3,5,3’-triiodothyroinine binding affinity. J. Clin. Endocrinol. Metab. 82(5), 1608–1614 (1997). https://doi.org/10.1210/jcem.82.5.3945

    Article  CAS  PubMed  Google Scholar 

  26. J.P. Tripathy, J.S. Thakur, G. Jeet, S. Chawla, S. Jain, A. Pal et al. Burden and risk factors of dyslipidemia-results from a STEPS survey in Punjab India. Diabetes Metab. Syndr. 11(Suppl 1), S21–S27 (2017). https://doi.org/10.1016/j.dsx.2016.08.015

    Article  PubMed  Google Scholar 

  27. V.L. Feigin, R.V. Krishnamurthi, P. Parmar, B. Norrving, G.A. Mensah, D.A. Bennett et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: The GBD 2013 Study. Neuroepidemiology 45(3), 161–176 (2015). https://doi.org/10.1159/000441085

    Article  PubMed  Google Scholar 

  28. S.M. Boekholdt, S.M. Titan, W.M. Wiersinga, K. Chatterjee, D.C. Basart, R. Luben et al. Initial thyroid status and cardiovascular risk factors: the EPIC-Norfolk prospective population study. Clin. Endocrinol. (Oxf.) 72(3), 404–410 (2010). https://doi.org/10.1111/j.1365-2265.2009.03640.x

    Article  CAS  PubMed  Google Scholar 

  29. C. Selmer, J.B. Olesen, M.L. Hansen, L.M. von Kappelgaard, J.C. Madsen, P.R. Hansen et al. Subclinical and overt thyroid dysfunction and risk of all-cause mortality and cardiovascular events: a large population study. J. Clin. Endocrinol. Metab. 99(7), 2372–2382 (2014). https://doi.org/10.1210/jc.2013-4184

    Article  CAS  PubMed  Google Scholar 

  30. I.M. Grais, J.R. Sowers, Thyroid and the heart. Am. J. Med 127(8), 691–698 (2014). https://doi.org/10.1016/j.amjmed.2014.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Gu, G. Meng, Q. Zhang, L. Liu, H. Wu, S. Zhang et al. Thyroid function and lipid profile in euthyroid adults: the TCLSIH cohort study. Endocrine 70(1), 107–114 (2020). https://doi.org/10.1007/s12020-020-02312-6

    Article  CAS  PubMed  Google Scholar 

  32. B.H.R. Wolffenbuttel, H.J.C.M. Wouters, S.N. Slagter, R.P. van Waateringe, A.C. Muller Kobold, J.V. van Vliet-Ostaptchouk et al. Thyroid function and metabolic syndrome in the population-based LifeLines cohort study. BMC Endocr. Disord. 17(1), 65 (2017). https://doi.org/10.1186/s12902-017-0215-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Y. Wang, Q. Yin, M. Xu, Q. Ni, W. Wang, Q. Wang, BMI modulates the effect of thyroid hormone on lipid profile in euthyroid adults. Int J. Endocrinol. 2017, 8591986 (2017). https://doi.org/10.1155/2017/8591986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. P. Juiz-Valiña, M. Cordido, E. Outeiriño-Blanco, S. Pértega, B.M. Varela-Rodríguez, M.J. García-Brao et al. Central resistance to thyroid hormones in morbidly obese subjects is reversed after bariatric surgery-induced weight loss. J. Clin. Med 9(2), 359 (2020). https://doi.org/10.3390/jcm9020359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. D. Yuan, S. Jia, P. Zhu, C. Zhang, Y. Liu, R. Liu et al. Usefulness of FT3 to FT4 ratio to predict mortality in euthyroid patients with prior cardiovascular events undergoing PCI: Five-year findings from a large single-center cohort study. Front Endocrinol. (Lausanne) 12, 700349 (2021). https://doi.org/10.3389/fendo.2021.700349

    Article  PubMed  Google Scholar 

  36. S. Lai, J. Li, Z. Wang, W. Wang, H. Guan, Sensitivity to thyroid hormone indices are closely associated with NAFLD. Front Endocrinol. (Lausanne) 12, 766419 (2021). https://doi.org/10.3389/fendo.2021.766419

    Article  PubMed  Google Scholar 

  37. L.Y. Zhou, M.Q. Deng, Q. Zhang, X.H. Xiao, Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin. Med J. 133, 1961–1970 (2020). https://doi.org/10.1097/CM9.0000000000000976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L.H. Duntas, G. Brenta, The effect of thyroid disorders on lipid levels and metabolism. Med Clin. North Am. 96(2), 269–281 (2012). https://doi.org/10.1016/j.mcna.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  39. K.Y. Jung, H.Y. Ahn, S.K. Han, Y.J. Park, B.Y. Cho, M.K. Moon, Association between thyroid function and lipid profiles, apolipoproteins, and high-density lipoprotein function. J. Clin. Lipido. 11(6), 1347–1353 (2017). https://doi.org/10.1016/j.jacl.2017.08.015

    Article  Google Scholar 

  40. A.M. Salter, R. Hayashi, M. al-Seeni, N.F. Brown, J. Bruce, O. Sorensen et al. Effects of hypothyroidism and high-fat feeding on mRNA concentrations for the low-density-lipoprotein receptor and on acyl-CoA:cholesterol acyltransferase activities in rat liver. Biochem J. 276(Pt 3), 825–832 (1991). https://doi.org/10.1042/bj2760825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. F. Yan, Q. Wang, M. Lu, W. Chen, Y. Song, F. Jing et al. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J. Hepatol. 61(6), 1358–1364 (2014). https://doi.org/10.1016/j.jhep.2014.06.037

    Article  CAS  PubMed  Google Scholar 

  42. F. Damiano, A. Rochira, A. Gnoni, L. Siculella, Action of thyroid hormones, T3 and T2, on hepatic fatty acids: differences in metabolic effects and molecular mechanisms. Int J. Mol. Sci. 18(4), 744 (2017). https://doi.org/10.3390/ijms18040744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P.J. Espenshade, A.L. Hughes, Regulation of sterol synthesis in eukaryotes. Annu Rev. Genet 41, 401–427 (2007). https://doi.org/10.1146/annurev.genet.41.110306.130315

    Article  CAS  PubMed  Google Scholar 

  44. S. Yamashita, N. Sakai, K. Hirano, M. Ishigami, T. Maruyama, N. Nakajima et al. Roles of plasma lipid transfer proteins in reverse cholesterol transport. Front Biosci. 1, 6–D366-87 (2001). https://doi.org/10.2741/yamashita. Mar

    Article  Google Scholar 

  45. G.J. De Grooth, A.H. Klerkx, E.S. Stroes, A.F. Stalenhoef, J.J. Kastelein, J.A. Kuivenhoven, A review of CETP and its relation to atherosclerosis. J. Lipid Res 45(11), 1967–1974 (2004). https://doi.org/10.1194/jlr.R400007-JLR200

    Article  CAS  PubMed  Google Scholar 

  46. L.H. Duntas, G. Brenta, The effect of thyroid disorders on lipid levels and metabolism. Med Clin. North Am. 96(2), 269–281 (2012). https://doi.org/10.1016/j.mcna.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  47. L.H. Duntas, G. Brenta, A renewed focus on the association between thyroid hormones and lipid metabolism. Front Endocrinol. 3, 9–511 (2018). https://doi.org/10.3389/fendo.2018.00511

    Article  Google Scholar 

  48. H.S. Oh, H. Kwon, J. Ahn, E. Song, S. Park, M. Kim, M. Han et al. Association between thyroid dysfunction and lipid profiles differs according to age and sex: results from the Korean National Health and Nutrition Examination Survey. Thyroid 28(7), 849–856 (2018). https://doi.org/10.1089/thy.2017.0656

    Article  CAS  PubMed  Google Scholar 

  49. C. Yuan, X. Sun, Y. Liu, J. Wu, The thyroid hormone levels and glucose and lipid metabolism in children with type 1 diabetes: a correlation analysis. Transl. Pediatr. 10(2), 276–282 (2021). https://doi.org/10.21037/tp-20-204

    Article  PubMed  PubMed Central  Google Scholar 

  50. Y. Lei, J. Yang, H. Li, H. Zhong, Q. Wan, Changes in glucose-lipid metabolism, insulin resistance, and inflammatory factors in patients with autoimmune thyroid disease. J. Clin. Lab Anal. 33(7), e22929 (2019). https://doi.org/10.1002/jcla.22929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. A. Amouzegar, E. Kazemian, S. Gharibzadeh, L. Mehran, M. Tohidi, F. Azizi, Association between thyroid hormones, thyroid antibodies and insulin resistance in euthyroid individuals: A population-based cohort. Diabetes Metab. 41(6), 480–488 (2015). https://doi.org/10.1016/j.diabet.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  52. B. Finan, C. Clemmensen, Z. Zhu, K. Stemmer, K. Gauthier, L. Müller et al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167(3), 843–857.e14 (2016). https://doi.org/10.1016/j.cell.2016.09.014.

    Article  CAS  PubMed  Google Scholar 

  53. A.P. Delitala, G. Delitala, P. Sioni, G. Fanciulli, Thyroid hormone analogs for the treatment of dyslipidemia: past, present, and future. Curr. Med Res Opin. 33(11), 1985–1993 (2017). https://doi.org/10.1080/03007995.2017.1330259

    Article  CAS  PubMed  Google Scholar 

  54. S.M.J. Cho, H.J. Lee, J.S. Shim, B.M. Song, H.C. Kim, Associations between age and dyslipidemia are differed by education level: The Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort. Lipids Health Dis. 19(1), 12 (2020). https://doi.org/10.1186/s12944-020-1189-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Tognini, A. Polini, G. Pasqualetti, S. Ursino, N. Caraccio, M. Ferdeghini et al. Age and gender substantially influence the relationship between thyroid status and the lipoprotein profile: results from a large cross-sectional study. Thyroid 22(11), 1096–1103 (2012). https://doi.org/10.1089/thy.2012.0013

    Article  CAS  PubMed  Google Scholar 

  56. Z. Jouyandeh, F. Nayebzadeh, M. Qorbani, M. Asadi, Metabolic syndrome and menopause. J. Diabetes Metab. Disord. 12(1), 1 (2013). https://doi.org/10.1186/2251-6581-12-1

    Article  PubMed  PubMed Central  Google Scholar 

  57. O. Koulouri, C. Moran, D. Halsall, K. Chatterjee, M. Gurnell, Pitfalls in the measurement and interpretation of thyroid function tests. Best. Pr. Res Clin. Endocrinol. Metab. 27(6), 745–762 (2013). https://doi.org/10.1016/j.beem.2013.10.003

    Article  CAS  Google Scholar 

Download references

Author contributions

Y.L., M.M., R.Y., and C.Y. were involved in study design and data interpretation; Y.L., M.M., F.L., Z.L., and R.Y. were analyzed the data and drafted the manuscript; L.Y., T.Y., Y.W., L.L., S.G., and S.G. collected data. All authors have read and approved the final manuscript.

Funding

This study was supported by the National Basic Research Program of China (973 project, grant numbers: 2014CB542902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Gao, Rongrong Yang or Chunquan Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Ethics approval

The Ethics Committee of Tianjin University of Traditional Chinese Medicine approved this study with the approval number TJUTCM-EC20190008. It was registered in Chinese Clinical Trial Registry on July 14, 2019 (registration number ChiCTR1900024535) and ClinicalTrials.gov on July 18, 2019 (registration number NCT04026724).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Yijia Liu, Mei Ma, Lin Li

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ma, M., Li, L. et al. Association between sensitivity to thyroid hormones and dyslipidemia in patients with coronary heart disease. Endocrine 79, 459–468 (2023). https://doi.org/10.1007/s12020-022-03254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-022-03254-x

Keywords

Navigation