Skip to main content
Log in

Potent antitumor activity of novel taxoids in anaplastic thyroid cancer

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid cancers and it is rapidly fatal without any effective therapeutic regimens. There are some clinical trials showing that paclitaxel-based chemotherapy for ATC can achieve a relatively high response rate and low incidence of adverse reaction. The aim of this study was to evaluate potential therapeutic activity of novel taxoids in ATC cells.

Methods

We evaluated antitumor activity of five novel 3′-difluorovinyltaxoids (DFV-taxoids) in anaplastic thyroid cancer cells by a series of in vitro and in vivo experiments. Besides, we also explored the potential mechanism underlying the difference among the taxoids and paclitaxel by molecular docking and tubulin polymerization assays.

Results

Our data showed that these novel DFV-taxoids were more effective than paclitaxel in ATC cell lines and xenografts, as reflected by the inhibition of cell proliferation, colony formation and tumorigenic potential in nude mice, and the induction of G2/M phase arrest and cell apoptosis. Using tubulin polymerization assays and molecular docking analysis, we found that these DFV-taxoids promoted more rapid polymerization of β-tubulin than paclitaxel.

Conclusions

Our data demonstrate that these novel taxoids exhibit stronger antitumor activity in ATC cells than paclitaxel, thereby providing a promising therapeutic strategy for the patients with ATC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data included in this study are available on request from the corresponding authors.

References

  1. W. Chen, R. Zheng, P.D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X.Q. Yu, J. He, Cancer statistics in China, 2015. Ca. Cancer J. Clin. 66, 115–132 (2016). https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  2. E. Molinaro, C. Romei, A. Biagini, E. Sabini, L. Agate, S. Mazzeo, G. Materazzi, S. Sellari-Franceschini, A. Ribechini, L. Torregrossa, F. Basolo, P. Vitti, R. Elisei, Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat. Rev. Endocrinol. 13, 644–660 (2017). https://doi.org/10.1038/nrendo.2017.76

    Article  CAS  PubMed  Google Scholar 

  3. A.A. Forastiere, Paclitaxel (Taxol) for the treatment of head and neck cancer. Semin. Oncol. 21, 49–52 (1994)

    CAS  PubMed  Google Scholar 

  4. T.M. Mekhail, M. Markman, Paclitaxel in cancer therapy. Expert. Opin. Pharmacother. 3, 755–766 (2002). https://doi.org/10.1517/14656566.3.6.755

    Article  CAS  PubMed  Google Scholar 

  5. E.K. Rowinsky, The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med. 48, 353–374 (1997). https://doi.org/10.1146/annurev.med.48.1.353

    Article  CAS  PubMed  Google Scholar 

  6. D.G.I. Kingston, Recent advances in the chemistry of taxol. J. Nat. Prod. 63, 726–734 (2000). https://doi.org/10.1021/np000064n

    Article  CAS  PubMed  Google Scholar 

  7. I. Ojima, J.C. Slater, E. Michaud, S.D. Kuduk, P.Y. Bounaud, P. Vrignaud, M.C. Bissery, J.M. Veith, P. Pera, R.J. Bernacki, Synthesis and structure-activity relationships of new second-generation taxoids. J. Med. Chem. 39, 3889–3896 (1996). https://doi.org/10.1021/jm9604080

    Article  CAS  PubMed  Google Scholar 

  8. I. Ojima, J. Chen, L. Sun, C.P. Borella, T. Wang, M.L. Miller, S. Lin, X. Geng, L. Kuznetsova, C. Qu, D. Gallager, X. Zhao, I. Zanardi, S. Xia, S.B. Horwitz, J.M.-S. Clair, J.L. Guerriero, D. Bar-Sagi, J.M. Veith, P. Pera, R.J. Bernacki, Design, synthesis, and biological evaluation of new-generation taxoids. J. Med. Chem. 51, 3203–3221 (2008). https://doi.org/10.1021/jm800086e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. I. Ojima, J.C. Slater, S.D. Kuduk, C.S. Takeuchi, R.H. Gimi, C.M. Sun, Y.H. Park, P. Pera, J.M. Veith, R.J. Bernacki, Syntheses and structure-activity relationships of taxoids derived from 14 beta-hydroxy-10-deacetylbaccatin III. J. Med. Chem. 40, 267–278 (1997). https://doi.org/10.1021/jm960563e

    Article  CAS  PubMed  Google Scholar 

  10. I. Ojima, X. Wang, Y. Jing, C. Wang, Quest for efficacious next-generation taxoid anticancer agents and their tumor-targeted delivery. J. Nat. Prod. 81, 703–721 (2017). https://doi.org/10.1021/acs.jnatprod.7b01012

    Article  CAS  Google Scholar 

  11. M.I. Nicoletti, T. Colombo, C. Rossi, C. Monardo, S. Stura, M. Zucchetti, A. Riva, P. Morazzoni, M.B. Donati, E. Bombardelli, M. D’Incalci, R. Giavazzi, IDN5109, a taxane with oral bioavailability and potent antitumor activity. Cancer Res. 60, 842–846 (2000)

    CAS  PubMed  Google Scholar 

  12. Q. Yang, M. Ji, H. Guan, B. Shi, P. Hou, Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. J. Clin. Endocrinol. Metab. 98, 1909–1917 (2013). https://doi.org/10.1210/jc.2013-2583

    Article  CAS  Google Scholar 

  13. K.A. Johnson, G.G. Borisy, Kinetic analysis of microtubule self-assembly in vitro. J. Mol. Biol. 117, 1–31 (1977). https://doi.org/10.1016/0022-2836(77)90020-1

    Article  CAS  PubMed  Google Scholar 

  14. R.C. Weisenberg, Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177, 1104–1105 (1972). https://doi.org/10.1126/science.177.4054.1104

    Article  CAS  PubMed  Google Scholar 

  15. M.L. Shelanski, F. Gaskin, C.R. Cantor, Microtubule assembly in the absence of added nucleotides. Proc. Natl Acad. Sci. USA. 70, 765–768 (1973). https://doi.org/10.1073/pnas.70.3.765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. O. Trott, A.J. Olson, Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. T.A. Halgren, Merck molecular force field. 3. Molecular geometries and vibrational frequencies for mmff94. J. Comput. Chem. 17, 553–586 (1996). https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T

    Article  CAS  Google Scholar 

  19. T.A. Halgren, Merck molecular force field. 1. Basis, form, scope, parameterization, and performance of mmff94. J. Comput. Chem. 17, 490–519 (1996). https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

    Article  CAS  Google Scholar 

  20. T.A. Halgren, Merck molecular force field. 5. Extension of mmff94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 17, 616–641 (1996). https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<616::AID-JCC5>3.0.CO;2-X

    Article  CAS  Google Scholar 

  21. T.A. Halgren, R.B. Nachbar, Merck molecular force field. 4. Conformational energies and geometries for mmff94. J. Comput. Chem. 17, 587–615 (1996). https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  22. J. Gasteiger, M.A. Marsili, A New model for calculating atomic charges in molecules. Tetrahedron Lett. 19, 3181–3184 (1978). https://doi.org/10.1016/S0040-4039(01)94977-9

    Article  Google Scholar 

  23. J. Gasteiger, M. Marsili, Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron Lett. 36, 3219–3228 (1980). https://doi.org/10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  24. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, Ucsf chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  25. D.J. Kingston, S. Bane, J.P. Snyder, The taxol pharmacophore and the T-taxol bridging principle. Cell Cycle 4, 279–289 (2005)

    Article  CAS  Google Scholar 

  26. J. Zhou, P. Giannakakou, Targeting microtubules for cancer chemotheraphy. Curr. Med. Chem. 5, 65–71 (2005). https://doi.org/10.2174/1568011053352569

    Article  CAS  Google Scholar 

  27. M.A. Jordan, R.J. Toso, D. Wilson, L. Thrower, Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl Acad. Sci. USA. 90, 9552–9556 (1993). https://doi.org/10.1073/pnas.90.20.9552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Gerdes, U. Schwab, H. Lemke, H. Stein, Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J. Cancer 31, 13–20 (1983). https://doi.org/10.1002/ijc.2910310104

    Article  CAS  PubMed  Google Scholar 

  29. E. Nogales, S.G. Wolf, K.H. Downing, Structure of the α, β- tubulin dimer by electron crystallography. Nature 391, 199–203 (1998). https://doi.org/10.1038/34465

    Article  CAS  PubMed  Google Scholar 

  30. J. Löwe, H. Li, K.H. Downing, E. Nogales, Refined structure of α, β-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001). https://doi.org/10.1006/jmbi.2001.5077

    Article  CAS  PubMed  Google Scholar 

  31. M. Jordan, L. Wilson, Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004). https://doi.org/10.1038/nrc1317

    Article  CAS  PubMed  Google Scholar 

  32. C. Wang, X. Wang, Y. Sun, A.K. Taouil, S. Yan, G.I. Botchkina, I. Ojima, Design, synthesis and SAR study of 3rd-generation taxoids bearing 3-CH3, 3-CH3O and 3-CHF2O groups at the C2-benzoate position. Bioorg. Chem. 95, 103523 (2020). https://doi.org/10.1016/j.bioorg.2019.103523

    Article  CAS  PubMed  Google Scholar 

  33. N. Howlader, A.M. Noone, M. Krapcho, D. Miller, A. Brest, M. Yu, J. Ruhl, Z. Tatalovich, A. Mariotto, D.R. Lewis, H.S. Chen, E.J. Feuer, K.A. Cronin. SEER Cancer Statistics Review, 1975–2017. National Cancer Institute. https://seer.cancer.gov/csr. Accessed 15 April 2020

  34. K. Ain, M. Egorin, P. DeSimone, Treatment of anaplastic thyroid carcinoma with paclitaxel: phase 2 trial using ninety-six-hour infusion. Thyroid 10, 587–594 (2000). https://doi.org/10.1089/thy.2000.10.587

    Article  CAS  PubMed  Google Scholar 

  35. H.T. Higashiyama, Y. Ito, M. Hirokawa, M. Fukushima, T. Uruno, A. Miya, F. Matsuzuka, A. Miyauchi, Induction chemotherapy with weekly paclitaxel administration for anaplastic thyroid carcinoma. Thyroid 20, 7–14 (2010). https://doi.org/10.1089/thy.2009.0115

    Article  CAS  PubMed  Google Scholar 

  36. C. Jing, Z. Gao, R. Wang, Z. Yang, B. Shi, P. Hou, Lenvatinib enhances the antitumor effects of paclitaxel in anaplastic thyroid cancer. Am. J. Cancer Res. 7, 903–912 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. S.Y. Kim, S.M. Kim, H. Chang, H.S. Chang, C.S. Park, Y.S. Lee, Synergistic anticancer activity of sorafenib, paclitaxel, and radiation therapy on anaplastic thyroid cancer in vitro and in vivo. Head. Neck 42, 3678–3684 (2020). https://doi.org/10.1002/hed.26431

    Article  PubMed  Google Scholar 

  38. S.H. Kim, J.G. Kang, C.S. Kim, S.H. Ihm, M.G. Choi, H.J. Yoo, S.J. Lee, Cytotoxic effect of celastrol alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells. Tumor Biol. 39, 1010428317698369 (2017). https://doi.org/10.1177/1010428317698369

    Article  CAS  Google Scholar 

  39. M.E. Cabanillas, M.D. Williams, G.B. Gunn, S.P. Weitzman, L. Burke, N.L. Busaidy, A.K. Ying, Y.H. Yiin, W.N. William, C. Lu, S.Y. Lai, Facilitating anaplastic thyroid cancer specialized treatment: a model for improving access to multidisciplinary care for patients with anaplastic thyroid cancer. Head. Neck 39, 1291–1295 (2017). https://doi.org/10.1002/hed.24784

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82072949 and 81770787 to P.H.), Innovation Talent Promotion Plan in Shaanxi Province (No. 2018TD-006 to P.H.), the Natural Science Foundation Research Project in Shaanxi Province (No. 2019JQ-122 to W.L.), the Open Project Program of Key Laboratory for Tumor Precision Medicine of Shaanxi Province, the first Affiliated Hospital of Xi’an Jiaotong University (No. KLTPM-SX2018-A2 to W.L.), the Natural Science Foundation of Guangdong Province, China (No.2015B020211012 to C.W.) and a grant from the National Institutes of Health, U. S. A. (CA 103314 to I.O.).

Author contributions

P.H. and I.O. conceived and designed the experiments. M.C.W., C.W.W., and C.F. performed the experiments, W.R.G., E.X.L., and W.L. analyzed the data. H.C., B.L., A.T. performed the docking analysis. P.H. and C.W.W. contributed reagents and materials. M.C.W., I.O., and P.H. wrote the paper. All the authors read and approved the final paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iwao Ojima or Peng Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal experiments were conducted and approved by the Laboratory Animal Center of Xi’an Jiaotong University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, C., Feng, C. et al. Potent antitumor activity of novel taxoids in anaplastic thyroid cancer. Endocrine 75, 465–477 (2022). https://doi.org/10.1007/s12020-021-02880-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-021-02880-1

Keywords

Navigation