Skip to main content

Advertisement

Log in

Progression and dormancy in metastatic thyroid cancer: concepts and clinical implications

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Distant metastasis classically has been defined as a late-stage event in cancer progression. However, it has become clear that metastases also may occur early in the “lifetime” of a cancer and that they may remain stable at distant sites. This stability of metastatic cancer deposits has been termed “metastatic dormancy” or, as we term it, “metastatic progression dormancy” as the progression either may reflect growth of already existing metastases or new cancer spread. Biologically, dormancy is the presence of nongrowing, static metastatic cells that survive over time. Clinically, dormancy is defined by stability in tumor markers, imaging, and clinical course. Metastatic well-differentiated thyroid cancer offers an excellent tumor type to understand these processes for several reasons: (1) primary therapy often includes removal of the entire gland with ablation of residual normal tissue thereby removing one source for new metastases; (2) the presence of a sensitive biochemical and radiographic monitoring tests enabling monitoring of metastasis throughout the progression process; and (3) its tendency toward prolonged clinical dormancy that can last for years or decades be followed by progression. This latter factor provides opportunities to define therapeutic targets and/or markers of progression. In this review, we will discuss concepts of metastatic progression dormancy and the factors that drive both long-term stability and loss of dormancy with a focus on thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D.R. Welch, D.R. Hurst, Defining the hallmarks of metastasis. Cancer Res. 79(12), 3011–3027 (2019). https://doi.org/10.1158/0008-5472.CAN-19-0458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M.D. Ringel, Metastatic dormancy and progression in thyroid cancer: targeting cells in the metastatic frontier. Thyroid 21(5), 487–492 (2011). https://doi.org/10.1089/thy.2011.2121

    Article  PubMed  PubMed Central  Google Scholar 

  3. J.L. Mohler, E.S. Antonarakis, A.J. Armstrong, A.V. D’Amico, B.J. Davis, T. Dorff, J.A. Eastham, C.A. Enke, T.A. Farrington, C.S. Higano, E.M. Horwitz, M. Hurwitz, J.E. Ippolito, C.J. Kane, M.R. Kuettel, J.M. Lang, J. McKenney, G. Netto, D.F. Penson, E.R. Plimack, J.M. Pow-Sang, T.J. Pugh, S. Richey, M. Roach, S. Rosenfeld, E. Schaeffer, A. Shabsigh, E.J. Small, D.E. Spratt, S. Srinivas, J. Tward, D.A. Shead, D.A. Freedman-Cass, Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. JNCCN 17(5), 479–505 (2019). https://doi.org/10.6004/jnccn.2019.0023

    Article  CAS  PubMed  Google Scholar 

  4. C. Paoletti, D.F. Hayes, Circulating tumor cells. Nov. Biomark. Contin. Breast Cancer 882, 235–258 (2015). https://doi.org/10.1007/978-3-319-22909-6_10

    Article  CAS  Google Scholar 

  5. J.D. Yang, M.C. Liu, J.B. Kisiel, Circulating tumor DNA and hepatocellular carcinoma. Semin. Liver Dis. 39(4), 452–462 (2019). https://doi.org/10.1055/s-0039-1688503

    Article  CAS  PubMed  Google Scholar 

  6. M. Ehlers, S. Allelein, F. Schwarz, H. Hautzel, A. Kuebart, M. Schmidt, M. Haase, T. Dringenberg, M. Schott, Increased numbers of circulating tumor cells in thyroid cancer patients. Horm. Metab. Res. 50(8), 602–608 (2018). https://doi.org/10.1055/a-0651-4913

    Article  CAS  PubMed  Google Scholar 

  7. S. Paget, The distribution of secondary growths in cancer of the breasts. Lancet 133(3421), 571–573 (1889). https://doi.org/10.1016/S0140-6736(00)49915-0

    Article  Google Scholar 

  8. G. Hadfield, The dormant cancer cell. Br. Med. J. 2(4888), 607–610 (1954). https://doi.org/10.1136/bmj.2.4888.607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Akhtar, A. Haider, S. Rashid, A. Dakhilalla, Paget’s “Seed and Soil” theory of cancer metastasis—an idea whose time has come. Adv. Anat. Pathol. 26(1), 69–74 (2019). https://doi.org/10.1097/PAP.0000000000000219

    Article  CAS  PubMed  Google Scholar 

  10. N. Hugen, Y.J.E. Sloot, R.T. Netea-Maier, C.V.D. Water, J.W.A. Smit, I.D. Nagtegaal, I.C.H.V.E.-V. Grunsven, Divergent metastatic patterns between subtypes of thyroid carcinoma results from the nationwide dutch pathology registry. JCEM 105(3), 299–306 (2020). https://doi.org/10.1210/clinem/dgz078

    Article  Google Scholar 

  11. M.R. Wick, Metastases of malignant neoplasms: historical, biological, & clinical considerations. Semin. Diagn. Pathol. 35(2), 112–122 (2018). https://doi.org/10.1053/j.semdp.2017.11.009

    Article  PubMed  Google Scholar 

  12. B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016). https://doi.org/10.1089/thy.2015.0020

    Article  PubMed  PubMed Central  Google Scholar 

  13. M.M. Sabra, E.J. Sherman, R.M. Tuttle, Tumor volume doubling time of pulmonary metastases predicts overall survival and can guide the initiation of multikinase inhibitor therapy in patients with metastatic, follicular cell-derived thyroid carcinoma. Cancer 123(15), 2955–2964 (2017). https://doi.org/10.1002/cncr.30690

    Article  CAS  PubMed  Google Scholar 

  14. A. Miyauchi, T. Kudo, M. Kihara, T. Higashiyama, Y. Ito, K. Kobayashi, A. Miya, Relationship of biochemically persistent disease and thyroglobulin-doubling time to age at surgery in patients with papillary thyroid carcinoma. Endocr. J. 60(4), 415–421 (2013). https://doi.org/10.1507/endocrj.EJ12-0363

    Article  CAS  PubMed  Google Scholar 

  15. F. Nabhan, M.D. Ringel, Thyroid nodules and cancer management guidelines: comparisons and controversies. Endocr. Relat. Cancer 24(2), 13–26 (2016). https://doi.org/10.1530/ERC-16-0432

    Article  Google Scholar 

  16. C.M. Neophytou, T.-C. Kyriakou, P. Papageorgis, Mechanisms of metastatic tumor dormancy and implications for cancer therapy. Int. J. Mol. Sci. 20(24), 1–21 (2019). https://doi.org/10.3390/ijms20246158

    Article  CAS  Google Scholar 

  17. M.Q. Reeves, E. Kandyba, S. Harris, R.D. Rosario, A. Balmain, Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20(6), 699–709 (2018). https://doi.org/10.1038/s41556-018-0109-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M.V. Zavyalova, E.V. Denisov, L.A. Tashireva, O.E. Savelieva, E.V. Kaigorodova, N.V. Krakhmal, V.M. Perelmuter, Intravasation as a key step in cancer metastasis. Biochemistry 84(7), 762–772 (2019). https://doi.org/10.1134/S0006297919070071

    Article  CAS  PubMed  Google Scholar 

  19. M. Janiszewska, M.C. Primi, T. Izard, Cell adhesion in cancer: beyond the migration of single cells. JBC 295(8), 2495–2505 (2020). https://doi.org/10.1074/jbc.REV119.007759

    Article  CAS  Google Scholar 

  20. Q. Liu, H. Zhang, X. Jiang, C. Qian, Z. Liu, D. Luo, Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol. Cancer 16(176), 1–19 (2017). https://doi.org/10.1186/s12943-017-0742-4

    Article  CAS  Google Scholar 

  21. A. Dongre, R.A. Weinberg, New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2018). https://doi.org/10.1038/s41580-018-0080-4

    Article  CAS  Google Scholar 

  22. S. Bhatia, P. Wang, A. Toh, E.W. Thompson, New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Front. Mol. Biosci. 7(71), 1–18 (2020). https://doi.org/10.3389/fmolb.2020.00071

    Article  Google Scholar 

  23. M. Peiris-Pagès, U.E. Martinez-Outschoorn, R.G. Pestell, F. Sotgia, M.P. Lisanti, Cancer stem cell metabolism. Breast Cancer Res. 18(1), 1–10 (2016). https://doi.org/10.1186/s13058-016-0712-6

    Article  CAS  Google Scholar 

  24. J.-M. Cho, H.J. Lee, J.H. Chung, W.Y. Kim, M.H. Kang, K.S. Ha, S.U. Woo, J.B. Lee, Papillary thyroid cancer tumor spheres cultured by passaging without sorting exhibit cancer stemness. Anticancer Res. 40(7), 3801–3809 (2020). https://doi.org/10.21873/anticanres.14369

    Article  PubMed  Google Scholar 

  25. V. Vasko, A.V. Espinosa, W. Scouten, H. He, H. Auer, S. Liyanarachchi, A. Larin, V. Savchenko, G.L. Francis, A.D.L. Chapelle, M. Saji, M.D. Ringel, Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. PNAS 104(8), 2803–2808 (2007). https://doi.org/10.1073/pnas.0610733104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A.C. Yeh, S. Ramaswamy, Mechanisms of cancer cell dormancy—another hallmark of cancer? Cancer Res. 75(23), 5014–5022 (2015). https://doi.org/10.1158/0008-5472.CAN-15-1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. R. Jahanban-Esfahlan, K. Seidi, M.H. Manjili, A. Jahanban-Esfahlan, T. Javaheri, P. Zare, Tumor cell dormancy: threat or opportunity in the fight against cancer. Cancers 11(8), 1–23 (2019). https://doi.org/10.3390/cancers11081207

    Article  CAS  Google Scholar 

  28. H. Endo, M. Inoue, Dormancy in cancer. Cancer Sci. 110(2), 474–480 (2018). https://doi.org/10.1111/cas.13917

    Article  CAS  Google Scholar 

  29. R.S. Lee, M. Schlumberger, B. Caillou, F. Pages, W.H. Fridman, E. Tartour, Phenotypic and functional characterisation of tumour infiltrating lymphocytes derived from thyroid tumours. Eur. J. Cancer 32(7), 1233–1239 (1996). https://doi.org/10.1016/0959-8049(96)00017-2

    Article  Google Scholar 

  30. J.J. Bastman, H.S. Serracino, Y. Zhu, M.R. Koenig, V. Mateescu, S.B. Sams, K.D. Davies, C.D. Raeburn Jr, C.M. R., B.R. Haugen, J.D. French, Tumor-infiltrating T cells and the PD-1 checkpoint pathway in advanced differentiated and anaplastic thyroid cancer. JCEM 101(7), 2863–2873 (2016). https://doi.org/10.1210/jc.2015-4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. Ryder, M. Gild, T.M. Hohl, E. Pamer, J. Knauf, R. Ghossein, J.A. Joyce, J.A. Fagin, Genetic and Pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PloS ONE 8(1), 1–10 (2013). https://doi.org/10.1371/journal.pone.0054302

    Article  CAS  Google Scholar 

  32. M. Ryder, R.A. Ghossein, J.C.M. Ricarte-Filho, J.A. Knauf, J.A. Fagin, Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr. Relat. Cancer 15(4), 1069–1074 (2008). https://doi.org/10.1677/ERC-08-0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Sun, R. Mezzadra, T.N. Schumacher, Regulation and function of the PD-L1 checkpoint. Immunity 48(3), 434–452 (2018). https://doi.org/10.1016/j.immuni.2018.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S. Moretti, E. Menicali, N. Nucci, M. Guzzetti, S. Morelli, E. Puxeddu, THERAPY OF ENDOCRINE DISEASE Immunotherapy of advanced thyroid cancer: from bench to bedside. Eur. J. Cancer 183(2), 41–55 (2020). https://doi.org/10.1530/EJE-20-0283

    Article  Google Scholar 

  35. E.E.V.D. Toom, J.E. Verdone, K.J. Pienta, Disseminated tumor cells and dormancy in prostate cancer metastasis. Curr. Opin. Biotechnol. 40, 9–15 (2016). https://doi.org/10.1016/j.copbio.2016.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Pradhan, J.L. Sperduto, C.J. Farino, J.H. Slater, Engineered in vitro models of tumor dormancy and reactivation. J. Biol. Eng. 12(37), 1–19 (2018). https://doi.org/10.1186/s13036-018-0120-9

    Article  CAS  Google Scholar 

  37. G. Ishii, A. Ochiai, S. Neri, Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv. Drug Deliv. Rev. 99, 186–196 (2015). https://doi.org/10.1016/j.addr.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  38. B. Arneth, Tumor microenvironment. Medicina 56(1), 1–21 (2019). https://doi.org/10.3390/medicina56010015

    Article  Google Scholar 

  39. L. MacDonald, J. Jenkins, G. Purvis, J. Lee, A.T. Franco, The thyroid tumor microenvironment: potential targets for therapeutic intervention and prognostication. Horm. Cancer 1–13 (2020). https://doi.org/10.1007/s12672-020-00390-6

  40. A.P. Estrada-Flórez, M.E. Bohórquez, A. Vélez, C.S. Duque, J.H. Donado, G. Mateus, C. Panqueba-Tarazona, G. Polanco-Echeverry, R. Sahasrabudhe, M. Echeverry, L.G. Carvajal-Carmona, BRAF and TERT mutations in papillary thyroid cancer patients of Latino ancestry. Endocr. Connect. 8(9), 1310–1317 (2019). https://doi.org/10.1530/EC-19-0376

    Article  PubMed  PubMed Central  Google Scholar 

  41. M. Xing, R. Liu, X. Liu, A.K. Murugan, G. Zhu, M.A. Zeiger, S. Pai, J. Bishop, BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J. Clin. Oncol. 32(25), 2718–2727 (2014). https://doi.org/10.1200/JCO.2014.55.5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R. Liu, T. Zhang, G. Zhu, M. Xing, Regulation of mutant TERT by BRAF V600E/MAP kinase pathway through FOS/GABP in human cancer. Nat. Commun. 9(1), 1–13 (2018). https://doi.org/10.1038/s41467-018-03033-1

    Article  CAS  Google Scholar 

  43. A.V. Nikitski, S.L. Rominski, V. Condello, C. Kaya, M. Wankhede, F. Panebianco, H. Yang, D.L. Altschuler, Y.E. Nikiforov, Mouse model of thyroid cancer progression and dedifferentiation driven by STRN-ALK expression and loss of p53: evidence for the existence of two types of poorly differentiated carcinoma. Thyroid 29(10), 1425–1437 (2019). https://doi.org/10.1089/thy.2019.0284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Xing, Genetic alterations in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Thyroid 20(7), 697–706 (2010). https://doi.org/10.1089/thy.2010.1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. G. Koifman, R. Aloni-Grinstein, V. Rotter, p53 balances between tissue hierarchy and anarchy. J. Mol. Cell Biol. 11(7), 553–563 (2019). https://doi.org/10.1093/jmcb/mjz022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. J.C. Ricarte-Filho, M. Ryder, D.A. Chitale, M. Rivera, A. Heguy, M. Ladanyi, M. Janakiraman, D. Solit, J.A. Knauf, R.M. Tuttle, R.A. Ghossein, J.A. Fagin, Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 69(11), 4885–4893 (2009). https://doi.org/10.1158/0008-5472.CAN-09-0727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Saji, M.D. Ringel, The PI3K-Akt-mTOR pathway in initiation and progression of thyroid tumors. Mol. Cell. Endocrinol. 321(1), 20–28 (2009). https://doi.org/10.1016/j.mce.2009.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. C.S. Kim, V.V. Vasko, Y. Kato, M. Kruhlak, M. Saji, S.-Y. Cheng, M.D. Ringel, AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology 146(10), 4456–4463 (2005). https://doi.org/10.1210/en.2005-0172

    Article  CAS  PubMed  Google Scholar 

  49. E.K. Jang, D.E. Song, S.Y. Sim, H. Kwon, Y.M. Choi, M.J. Jeon, J.M. Han, W.G. Kim, T.Y. Kim, Y.K. Shong, W.B. Kim, NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid 24(8), 1275–1281 (2014). https://doi.org/10.1089/thy.2014.0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.M. Sabra, J.M. Dominguez, R.K. Grewal, S.M. Larson, R.A. Ghossein, R.M. Tuttle, J.A. Fagin, Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. JCEM 98(5), 829–836 (2013). https://doi.org/10.1210/jc.2012-3933

    Article  Google Scholar 

  51. S.E. Justiniano, J.P. McElroy, L. Yu, A.S. Yilmaz, K.R. Coombes, L. Senter, R. Nagy Jr., W. P., S. Volinia, M. Vinco, T.J. Giordano, C.M. Croce, M. Saji, M.D. Ringel, Genetic variants in thyroid cancer distant metastases. Endocr. Relat. Cancer 23(10), 33–36 (2016). https://doi.org/10.1530/ERC-16-0351

    Article  Google Scholar 

  52. I. Landa, T. Ibrahimpasic, L. Boucai, R. Sinha, J.A. Knauf, R.H. Shah, S. Dogan, J.C. Ricarte-Filho, G.P. Krishnamoorthy, B. Xu, N. Schultz, M.F. Berger, C. Sander, B.S. Taylor, R. Ghossein, I. Ganly, J.A. Fagin, Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Investig. 126(3), 1052–1066 (2016). https://doi.org/10.1172/JCI85271

    Article  PubMed  PubMed Central  Google Scholar 

  53. P.R. Prasetyanti, J.P. Medema, Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16(41), 1–9 (2017). https://doi.org/10.1186/s12943-017-0600-4

    Article  CAS  Google Scholar 

  54. T.M. Bodenstine, D.R. Welch, Metastasis suppressors and the tumor microenvironment. Cancer Microenviron. 1(1), 1–11 (2008). https://doi.org/10.1007/s12307-008-0001-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. L.J. Stafford, K.S. Vaidya, D.R. Welch, Metastasis suppressors genes in cancer. Int. J. Biochem. Cell Biol. 40(5), 874–891 (2008). https://doi.org/10.1016/j.biocel.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  56. M.D. Ringel, E. Hardy, V.J. Bernet, H.B. Burch, F. Schuppert, K.D. Burman, M. Saji, Metastin receptor is overexpressed in papillary thyroid cancer and activates MAP kinase in thyroid cancer cells. JCEM 87(5), 2399–2402 (2002). https://doi.org/10.1210/jcem.87.5.8626

    Article  CAS  PubMed  Google Scholar 

  57. K.M. Wong, J. Song, V. Saini, Y.H. Wong, Small molecules as drugs to upregulate metastasis suppressors in cancer cells. Curr. Med. Chem. 26(32), 5876–5899 (2019). https://doi.org/10.2174/0929867325666180522090842

    Article  CAS  PubMed  Google Scholar 

  58. N. Stathatos, I. Bourdeau, A.V. Espinosa, M. Saji, V.V. Vasko, K.D. Burman, C.A. Stratakis, M.D. Ringel, KiSS-1/G protein-coupled receptor 54 metastasis suppressor pathway increases myocyte-enriched calcineurin interacting protein 1 expression and chronically inhibits calcineurin activity. JCEM 90(9), 5432–5440 (2005). https://doi.org/10.1210/jc.2005-0963

    Article  CAS  PubMed  Google Scholar 

  59. A.V. Espinosa, M. Shinohara, L.M. Porchia, Y.J. Chung, S. McCarty, M. Saji, M.D. Ringel, Regulator of calcineurin 1 modulates cancer cell migration in vitro. Clin. Exp. Metastasis 26, 517–526 (2009). https://doi.org/10.1007/s10585-009-9251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. C. Wang, M. Saji, S.E. Justiniano, A.M. Yusof, X. Zhang, L. Yu, S. Fernández Jr, W. P., K.L. Perle, H. Nakanishi, N. Pohlman, M.D. Ringel, RCAN1-4 is a thyroid cancer growth and metastasis suppressor. JCI Insight 2(5), 1–15 (2017). https://doi.org/10.1172/jci.insight.90651

    Article  Google Scholar 

  61. S.B. Seminara, S. Messager, E.E. Chatzidaki, R.R. Thresher Jr, S.A. J., J.K. Shagoury, Y. Bo-Abbas, W. Kuohung, K.M. Schwinof, A.G. Hendrick, D. Zahn, J. Dixon, U.B. Kaiser, S.A. Slaugenhaupt, J.F. Gusella, S. O’Rahilly, M.B.L. Carlton Jr, F.C. W., S.A.J.R. Aparicio, W.H. Colledge, The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349(17), 1614–1627 (2003). https://doi.org/10.1056/NEJMoa035322

    Article  CAS  PubMed  Google Scholar 

  62. A.K. Topaloglu, J.A. Tello, L.D. Kotan, M.N. Ozbek, M.B. Yilmaz, S. Erdogan, F. Gurbuz, F. Temiz, R.P. Millar, B. Yuksel, Inactivating KISS1 mutation and hypogonadotropic hypogonadism. N. Engl. J. Med 366(7), 629–635 (2012). https://doi.org/10.1056/NEJMoa1111184

    Article  CAS  PubMed  Google Scholar 

  63. B.H. Beck, D.R. Welch, The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. Eur. J. Cancer 46(7), 1283–1289 (2010). https://doi.org/10.1016/j.ejca.2010.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. K. Arab, L.T. Smith, A. Gast, D. Weichenhan, J.P.-H. Huang, R. Claus, T. Hielscher, A.V. Espinosa, M.D. Ringel, C.D. Morrison, D. Schadendorf, R. Kumar, C. Plass, Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma. Carcinogenesis 32(10), 1467–1473 (2011). https://doi.org/10.1093/carcin/bgr138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. J.H. Lee, M.E. Miele, D.J. Hicks, K.K. Phillips, J.M. Trent, B.E. Weissman, D.R. Welch, KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 88(23), 1731–1737 (1996). https://doi.org/10.1093/jnci/88.23.1731

    Article  CAS  PubMed  Google Scholar 

  66. C.M. Trevisana, E. Montagna, R.D. Oliveira, D.M. Christofolini, C.P. Barbosa, K.A. Crandall, B. Bianco, Kisspeptin/GPR54 system: what do we know about its role in human reproduction? Cell. Physiol. Biochem. 49(4), 1259–1276 (2018). https://doi.org/10.1159/000493406

    Article  CAS  Google Scholar 

  67. T. Minami, K. Yano, M. Miura, M. Kobayashi, J.-I. Suehiro, P.C. Reid, T. Hamakubo, S. Ryeom, W.C. Aird, T. Kodama, The Down syndrome critical region gene 1 short variant promoters direct vascular bed–specific gene expression during inflammation in mice. JCI 119(8), 2257–2270 (2009). https://doi.org/10.1172/JCI35738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. M. Iiizumi, S. Bandyopadhyay, K. Watabe, Interaction of duffy antigen receptor for chemokines and KAI1: a critical step in metastasis suppression. Cancer Res. 67(4), 1411–1414 (2007). https://doi.org/10.1158/0008-5472.CAN-06-3801

    Article  CAS  PubMed  Google Scholar 

  69. Q. Liu, J.C. Busby, J.D. Molkentin, Interaction between TAK1–TAB1–TAB2 and RCAN1–calcineurin defines a signalling nodal control point. Nat. Cell Biol. 11, 154–161 (2009). https://doi.org/10.1038/ncb1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. A.M.M.A. Chowdhury, H. Katoh, A. Hatanaka, H. Iwanari, N. Nakamura, T. Hamakubo, T. Natsume, T. Waku, A. Kobayashi, Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation. Sci. Rep. 7(1), 1–14 (2017). https://doi.org/10.1038/s41598-017-12675-y

    Article  CAS  Google Scholar 

  71. K.-H. Baek, A. Zaslavsky, R.C. Lynch, C. Britt, Y. Okada, R.J. Siarey, M.W. Lensch, I.-H. Park, S.S. Yoon, T. Minami, J.R. Korenberg, J. Folkman, G.Q. Daley, W.C. Aird, Z. Galdzicki, S. Ryeom, Down’s syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 459, 1126–1130 (2009). https://doi.org/10.1038/nature08062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. S. Ryeom, K.-H. Baek, M.J. Rioth, R.C. Lynch, A. Zaslavsky, A. Birsner, S.S. Yoon, F. McKeon, Targeted deletion of the calcineurin inhibitor DSCR1 suppresses tumor growth. Cancer Cell 13(6), 420–431 (2008). https://doi.org/10.1016/j.ccr.2008.02.018

    Article  CAS  PubMed  Google Scholar 

  73. Consortium, T.I.T.P.-C.A.o.W.G., Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). https://doi.org/10.1038/s41586-020-1969-6

    Article  CAS  Google Scholar 

  74. A. Covach, S. Patel, H. Hardin, R.V. Lloyd, Phosphorylated mechanistic target of rapamycin (p-mTOR) and noncoding RNA expression in follicular and Hürthle cell thyroid neoplasm. Endocr. Pathol. 28(3), 207–212 (2017). https://doi.org/10.1007/s12022-017-9490-7

    Article  CAS  PubMed  Google Scholar 

  75. I. Ganly, J.R. Filho, S. Eng, R. Ghossein, L.G.T. Morris, Y. Liang, N. Socci, K. Kannan, Q. Mo, J.A. Fagin, T.A. Chan, Genomic dissection of hurthle cell carcinoma reveals a unique class of thyroid malignancy. J. Clin. Endocrinol. Metab. 98(5), 962–972 (2013). https://doi.org/10.1210/jc.2012-3539

    Article  Google Scholar 

  76. I. Ganly, V. Makarov, S. Deraje, Y. Dong, E. Reznik, V. Seshan, G. Nanjangud, S. Eng, P. Bose, F. Kuo, L.G.T. Morris, I. Landa, P. Blecua, C. Albornoz, N. Riaz, Y.E. Nikiforov, K. Patel, C. Umbricht, M. Zeiger, E. Kebebew, E. Sherman, R. Ghossein, J.A. Fagin, A.T. Chan, Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell 34(2), 256–270 (2018). https://doi.org/10.1016/j.ccell.2018.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. R.K. Gopal, K. Kübler, S.E. Calvo, P. Polak, D. Livitz, D. Rosebrock, P.M. Sadow, B. Campbell, S.E. Donovan, S. Amin, B.J. Gigliotti, Z. Grabarek, J.M. Hess, C. Stewart, L.Z. Braunstein, P.F. Arndt, S. Mordecai, A.R. Shih, F. Chaves, T. Zhan, C.C. Lubitz, J. Kim, A.J. Iafrate, L. Wirth, S. Parangi, I. Leshchiner, G.H. Daniels, V.K. Mootha, D. Dias-Santagata, G. Getz, D.G. McFadden, Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in hürthle cell carcinoma. Cancer Cell 34(2), 242–255 (2018). https://doi.org/10.1016/j.ccell.2018.06.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. S. Papp, S.L. Asa, When thyroid carcinoma goes bad: a morphological and molecular analysis. Head Neck Pathol. 9(1), 16–23 (2015). https://doi.org/10.1007/s12105-015-0619-z

    Article  PubMed  PubMed Central  Google Scholar 

  79. M.E. Cabanillas, M. Ryder, C. Jimenez, Targeted therapy for advanced thyroid cancer: kinase inhibitors and beyond. Endocr. Rev. 40(6), 1573–1604 (2019). https://doi.org/10.1210/er.2019-00007

    Article  PubMed  PubMed Central  Google Scholar 

  80. J. Qin, Z. Zhang, Z. Fu, H. Ren, M. Liu, M. Qian, B. Du, The UDP/P2y6 axis promotes lung metastasis of melanoma by remodeling the premetastatic niche. Cell. Mol. Immunol. 1–3 (2020). https://doi.org/10.1038/s41423-020-0392-0

  81. Y. Liu, X. Cao, Characteristics and significance of the pre-metastatic niche. Cancer Cell 30(5), 668–681 (2016). https://doi.org/10.1016/j.ccell.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  82. A.M. Høye, J.T. Erler, Structural ECM components in the premetastatic and metastatic niche. Am. J. Physiol. Cell Physiol. 310(11), 955–967 (2016). https://doi.org/10.1152/ajpcell.00326.2015

    Article  Google Scholar 

  83. K. Agarwal, M. Saji, S.M. Lazaroff, A.F. Palmer, M.D. Ringel, M.E. Paulaitis, Analysis of exosome release as a cellular response to MAPK pathway inhibition. Langmuir 31(19), 5440–5448 (2015). https://doi.org/10.1021/acs.langmuir.5b00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. N. Guzman, K. Agarwal, D. Asthagiri, L. Yu, M. Saji, M.D. Ringel, M.E. Paulaitis, Breast cancer–specific miR signature unique to extracellular vesicles includes “microRNA-like” tRNA fragments. Mol. Cancer Res. 13(5), 891–901 (2015). https://doi.org/10.1158/1541-7786.MCR-14-0533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S.M. Ghouse, S.K. Vadrevu, S. Manne, B. Reese, J. Patel, B. Patel, A. Silwal, N. Lodhi, Y. Paterson, S.K. Srivastava, M. Karbowniczek, M.M. Markiewski, Therapeutic targeting of vasculature in the premetastatic and metastatic niches reduces lung metastasis. J. Immunol. 204(4), 990–1000 (2020). https://doi.org/10.4049/jimmunol.1901208

    Article  CAS  PubMed  Google Scholar 

  86. H. Peinado, H. Zhang, I.R. Matei, B. Costa-Silva, A. Hoshino, G. Rodrigues, B. Psaila, R.N. Kaplan, J.F. Bromberg, Y. Kang, M.J. Bissell, T.R. Cox, A.J. Giaccia, J.T. Erler, S. Hiratsuka, C.M. Ghajar, D. Lyden, Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017). https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  87. K.C. Bible, G.J. Cote, M.J. Demeure, R. Elisei, S. Jhiang, M.D. Ringel, Correlative studies in clinical trials: a position statement from the international thyroid oncology group. JCEM 100(12), 4387–4395 (2015). https://doi.org/10.1210/jc.2015-2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. T. Ibrahimpasic, B. Xu, I. Landa, S. Dogan, S. Middha, V. Seshan, S. Deraje, D.L. Carlson, J. Migliacci, J.A. Knauf, B. Untch, M.F. Berger, L. Morris, R.M. Tuttle, T. Chan, J.A. Fagin, R. Ghossein, I. Ganly, Genomic alterations in fatal forms of non-anaplastic thyroid cancer: identification of MED12 and RBM10 as novel thyroid cancer genes associated with tumor virulence. Clin. Cancer Res. 23(19), 5970–5980 (2017). https://doi.org/10.1158/1078-0432.CCR-17-1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. T. Masoodi, A.K. Siraj, S. Siraj, S. Azam, Z. Qadri, W.N. Albalawy, S.K. Parvathareddy, S.S. Al-Sobhi, F. Al-Dayel, F.S. Alkuraya, K.S. Al-Kuraya, Whole-exome sequencing of matched primary and metastatic papillary thyroid cancer. Thyroid 30(1), 42–56 (2020). https://doi.org/10.1089/thy.2019.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. X. Lan, H. Bao, X. Ge, J. Cao, X. Fan, Q. Zhang, K. Liu, X. Zhang, Z. Tan, C. Zheng, A. Wang, C. Chen, X. Zhu, J. Wang, J. Xu, X. Zhu, X. Wu, X. Wang, Y. Shao, M. Ge, Genomic landscape of metastatic papillary thyroid carcinoma and novel biomarkers for predicting distant metastasis. Cancer Sci. 111(6), 2163–2173 (2020). https://doi.org/10.1111/cas.14389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. N.M. Iñiguez-Ariza, S. Jasim, M.M. Ryder, A.V. Chintakuntlawar, J.C. Morris, C.R. Hilger, M.E. Menefee, R.C. Smallridge, N.J. Karlin, C. Alcaino, K.C. Bible, Foundation one genomic interrogation of thyroid cancers in patients with metastatic disease requiring systemic therapy. J. Clin. Endocrinol. Metab. 105(7), 1–12 (2020). https://doi.org/10.1210/clinem/dgaa246

    Article  Google Scholar 

  92. G.P. Gupta, J. Massagué, Cancer metastasis: building a framework. Cell 127(4), 679–695 (2006). https://doi.org/10.1016/j.cell.2006.11.001

    Article  CAS  PubMed  Google Scholar 

  93. V. Baeriswyl, G. Christofori, The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 19(5), 329–337 (2009). https://doi.org/10.1016/j.semcancer.2009.05.003

    Article  CAS  PubMed  Google Scholar 

  94. S. Indraccolo, Insights into the regulation of tumor dormancy by angiogenesis in experimental tumors. Adv. Exp. Med. Biol. 734, 37–52 (2013). https://doi.org/10.1007/978-1-4614-1445-2_3

    Article  CAS  PubMed  Google Scholar 

  95. M. Kirsch, M. G. Schackert, P. M. Black, Metastasis and angiogenesis. Cancer Treat Res. 117, 285–304 (2004). https://doi.org/10.1007/978-1-4419-8871-3_17

    Article  CAS  PubMed  Google Scholar 

  96. M.V. Backer, C.V. Hamby, J.M. Backer, Inhibition of vascular endothelial growth factor receptor signaling in angiogenic tumor vasculature. Adv. Genet. 67, 1–27 (2009). https://doi.org/10.1016/S0065-2660(09)67001-2

    Article  CAS  PubMed  Google Scholar 

  97. S.I. Sherman, L.J. Wirth, J.-P. Droz, M. Hofmann, L. Bastholt, R.G. Martins, L. Licitra, M.J. Eschenberg, Y.-N. Sun, T. Juan, D.E. Stepan, M.J. Schlumberger, Motesanib diphosphate in progressive differentiated thyroid cancer. N. Engl. J. Med. 359(1), 31–42 (2008). https://doi.org/10.1056/NEJMoa075853

    Article  CAS  PubMed  Google Scholar 

  98. S.-P. Cheng, C.-L. Liu, M.-J. Chen, M.-N. Chien, C.-H. Leung, C.-H. Lin, Y.-C. Hsu, J.-J. Lee, CD74 expression and its therapeutic potential in thyroid carcinoma. Endocr. Relat. Cancer 22(2), 179–190 (2015). https://doi.org/10.1530/ERC-14-0269

    Article  CAS  PubMed  Google Scholar 

  99. I. Lewy-Trenda, A. Wierzchniewska-Ławska,, Expression of vascular endothelial growth factor (VEGF) in human thyroid tumors. Pol. J. Pathol. 53(3), 129–132 (2002).

    CAS  PubMed  Google Scholar 

  100. G. Bunone, P. Vigneri, L. Mariani, S. Butó, P. Collini, S. Pilotti, A. Pierotti, M.I. Bongarzone, Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am. J. Pathol. 155(6), 1967–1976 (1999). https://doi.org/10.1016/S0002-9440(10)65515-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. S. Rajabi, M.H. Dehghan, R. Dastmalchi, F.J. Mashayekhi, S. Salami, M. Hedayati, The roles and role-players in thyroid cancer angiogenesis. Endocr. J. 66(4), 277–293 (2019). https://doi.org/10.1507/endocrj.EJ18-0537

    Article  CAS  PubMed  Google Scholar 

  102. M.S. Brose, C.M. Nutting, B. Jarzab, R. Elisei, S. Siena, L. Bastholt, C.D.L. Fouchardiere, F. Pacini, R. Paschke, Y.K. Shong, S.I. Sherman, J.W.A. Smit, J. Chung, C. Kappeler, C. Peña, I. Molnár, M.J. Schlumberger; investigators, D., Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940), 319–328 (2014). https://doi.org/10.1016/S0140-6736(14)60421-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. M. Schlumberger, M. Tahara, L.J. Wirth, B. Robinson, M.S. Brose, R. Elisei, M.A. Habra, K. Newbold, M.H. Shah, A.O. Hoff, A.G. Gianoukakis, N. Kiyota, M.H. Taylor, S.-B. Kim, M.K. Krzyzanowska, C.E. Dutcus, B.D.L. Heras, J. Zhu, S.I. Sherman, Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 372(7), 621–630 (2015). https://doi.org/10.1056/NEJMoa1406470

    Article  CAS  PubMed  Google Scholar 

  104. C.H. Stuelten, C.A. Parent, D.J. Montell, Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat. Rev. Cancer 18(5), 296–312 (2018). https://doi.org/10.1038/nrc.2018.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. F. Zijl, G. Krupitza, W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat. Res./Rev. Mutat. Res. 728(1–2), 23–24 (2011). https://doi.org/10.1016/j.mrrev.2011.05.002

    Article  CAS  Google Scholar 

  106. B.-J. Chen, J.-S. Wu, Y.-J. Tang, Y.-L. Tang, X.-H. Liang, What makes leader cells arise: intrinsic properties and support from neighboring cells. J. Cell. Physiol. 1–14 (2020). https://doi.org/10.1002/jcp.29828

  107. C. Walker, E. Mojares, A.D.R. Hernández, Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 19(10), 1–31 (2018). https://doi.org/10.3390/ijms19103028

    Article  CAS  Google Scholar 

  108. P.G. Gritsenko, O. Ilina, P. Friedl, Interstitial guidance of cancer invasion. J. Pathol. 226(2), 185–199 (2011). https://doi.org/10.1002/path.3031

    Article  CAS  Google Scholar 

  109. M. Fang, J. Yuan, C. Peng, Y. Li, Collagen as a double-edged sword in tumor progression. Tumor Biol. 35(4), 2871–2882 (2013). https://doi.org/10.1007/s13277-013-1511-7

    Article  CAS  Google Scholar 

  110. P.P. Provenzano, K.W. Eliceiri, J.M. Campbell, D.R. Inman, J.G. White, P.J. Keely, Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4(38), 1–16 (2006). https://doi.org/10.1186/1741-7015-4-38

    Article  CAS  Google Scholar 

  111. D. Young, N. Das, A. Anowai, A. Dufour, Matrix metalloproteases as influencers of the cells’ social media. Int. J. Mol. Sci. 20(16), 1–20 (2019). https://doi.org/10.3390/ijms20163847

    Article  CAS  Google Scholar 

  112. G. Gonzalez-Avila, B. Sommer, A.D. Mendoza-Posada, C. Ramos, A.A. Garcia-Hernandez, R. Falfan-Valencia, Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit. Rev. Oncol./Hematol. 137, 57-83 (2019). https://doi.org/10.1016/j.critrevonc.2019.02.010

  113. A. Winer, S. Adams, P. Mignatti, Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol. Cancer Ther. 17(6), 1147–1155 (2018). https://doi.org/10.1158/1535-7163.MCT-17-0646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. L.E. Baker, R.T. Bonnecaze, M.H. Zaman, Extracellular matrix stiffness and architecture govern intracellular rheology in cancer. Biophys. J. 97(4), 1013–1021 (2009). https://doi.org/10.1016/j.bpj.2009.05.054

  115. R.E. Schweppe, A.A. Kerege, J.D. French, V. Sharma, R.L. Grzywa, B.R. Haugen, Inhibition of Src with AZD0530 reveals the Src-focal adhesion kinase complex as a novel therapeutic target in papillary and anaplastic thyroid cancer. JCEM 94(6), 2199–2203 (2009). https://doi.org/10.1210/jc.2008-2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. S.K. McCarty, M. Saji, X. Zhang, D. Jarjoura, A. Fusco, V.V. Vasko, M.D. Ringel, I. Group, p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated in thyroid cancer invasion. Endocr. Relat. Cancer 17(4), 989–999 (2010). https://doi.org/10.1677/ERC-10-0168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. S.K. McCarty, M. Saji, X. Zhang, C.M. Knippler, L.S. Kirschner, S. Fernandez, M.D. Ringel, BRAF activates and physically interacts with PAK to regulate cell motility. Endocr. Relat. Cancer 21(6), 865–877 (2014). https://doi.org/10.1530/ERC-14-0424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. C.E. Jones, A.M. Hammer, Y. Cho, G.M. Sizemore, E. Cukierman, L.D. Yee, S.N. Ghadiali, M.C. Ostrowski, J.L. Leight, Stromal PTEN regulates extracellular matrix organization in the mammary gland. Neoplasia 21(1), 132–145 (2019). https://doi.org/10.1016/j.neo.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  119. G.M. Sizemore, S. Balakrishnan, K.A. Thies, A.M. Hammer, S.T. Sizemore, A.J. Trimboli, M.C. Cuitiño, S.A. Steck, G. Tozbikian, R.D. Kladney, N. Shinde, M. Das, D. Park, S. Majumder, S. Krishnan, L. Yu, S.A. Fernandez, A. Chakravarti, P.G. Shields, J.R. White, L.D. Yee, T.J. Rosol, T. Ludwig, M. Park, G. Leone, M.C. Ostrowski, Stromal PTEN determines mammary epithelial response to radiotherapy. Nat. Commun. 9(1), 1–14 (2018). https://doi.org/10.1038/s41467-018-05266-6

    Article  CAS  Google Scholar 

  120. J.A. Wallace, F. Li, G. Leone, M.C. Ostrowski, Pten in the breast tumor microenvironment: modeling tumor–stroma coevolution. Cancer Res. 71(4), 1203–1207 (2011). https://doi.org/10.1158/0008-5472.CAN-10-3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. K.A. Thies, A.M. Hammer, B.E. Hildreth, S.A. Steck, J.M. Spehar, R.D. Kladney, J.M. Geisler, M. Das, L.O. Russell, J.F. Bey, C.M. Bolyard, R. Pilarski, A.J. Trimboli, M.C. Cuitiño, C.S. Koivisto, D.G. Stover, L. Schoenfield, J. Otero, J. Godbout, A. Chakravarti, M.D. Ringel, B. Ramaswamy, Z. Li, B. Kaur, G. Leone, M.C. Ostrowski, S.T. Sizemore, G.M. Sizemore, Stromal platelet-derived growth factor receptor-β signaling promotes breast cancer metastasis in the brain. Cancer Res. (2020). https://doi.org/10.1158/0008-5472.CAN-19-3731

  122. L.A. Jolly, S. Novitskiy, P. Owens, N. Massoll, N. Cheng, W. Fang, H.L. Moses, A.T. Franco, Fibroblast-mediated collagen remodeling within the tumor microenvironment facilitates progression of thyroid cancers driven by BrafV600E and Pten loss. Cancer Res. 76(7), 1804–1813 (2016). https://doi.org/10.1158/0008-5472.CAN-15-2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. D.S. Vinaya, E.P. Ryan, G. Pawelec, H. Talib, W. Stagg, J. Elkord, E. Lichtor, T. Decker, W.K. Whelan, R.L. Kumara, M.C.S. H., E. Signori, K. Honoki, A.G. Georgakilas, A. Amin, W.G. Helfericho, C.S. Boosani, G. Guha, M.R. Ciriolo, S. Chen, S.I. Mohammed, A.S. Azmi, W.N. Keith, A. Bilsland, D. Bhakta, D. Halicka, H. Fujii, K. Aquilano, S.S. Ashraf, S. Nowsheen, X. Yang, B.K. Choi, B.S. Kwon, Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35, 185–198 (2015). https://doi.org/10.1016/j.semcancer.2015.03.004

    Article  CAS  Google Scholar 

  124. B. Jankovic, K.T. Le, J.M. Hershman, Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? JCEM 98(2), 474–482 (2013). https://doi.org/10.1210/jc.2012-2978

    Article  CAS  PubMed  Google Scholar 

  125. F. Medas, E. Erdas, G.L. Canu, A. Longheu, G. Pisano, M. Tuveri, P.G. Calò, Does hyperthyroidism worsen prognosis of thyroid carcinoma? A retrospective analysis on 2820 consecutive thyroidectomies. J. Otolaryngol. Head Neck Surg. 47(6), 1–6 (2018). https://doi.org/10.1186/s40463-018-0254-2

    Article  Google Scholar 

  126. A.J. Gentles, A.M. Newman, C.L. Liu, S.V. Bratman, W. Feng, D. Kim, V.S. Nair, Y. Xu, A. Khuong, C.D. Hoang, M. Diehn, R.B. West, S.K. Plevritis, A.A. Alizadeh, The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015). https://doi.org/10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. K.T. Nash, P.A. Phadke, J.-M. Navenot, D.R. Hurst, M.A. Accavitti-Loper, E. Sztul, K.S. Vaidya, A.R. Frost, J.C. Kappes, S.C. Peiper, D.R. Welch, Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. JNCI 99(4), 309–321 (2007). https://doi.org/10.1093/jnci/djk053

    Article  CAS  PubMed  Google Scholar 

  128. D. Ribatti, The concept of immune surveillance against tumors: the first theories. Oncotarget 8(4), 7175–7180 (2017). https://doi.org/10.18632/oncotarget.12739

    Article  PubMed  Google Scholar 

  129. W. Ngwa, O.C. Irabor, J.D. Schoenfeld, J. Hesser, S. Demaria, S.C. Formenti, Using immunotherapy to boost the abscopal effect. Nat. Rev. Cancer 18(5), 313–322 (2018). https://doi.org/10.1038/nrc.2018.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. J.D. French, G.R. Kotnis, S. Said, C.D. Raeburn, C. Robert, J. McIntyre, J.P. Klopper, B.R: Haugen, Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. JCEM 97(6), 934–943 (2012). https://doi.org/10.1210/jc.2011-3428

    Article  CAS  Google Scholar 

  131. S. Scarpino, A. Stoppacciaro, F. Ballerini, M. Marchesi, M. Prat, M.C. Stella, S. Sozzani, P. Allavena, A. Mantovani, L.P. Ruco, Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells. Am. J. Pathol. 156(3), 831–837 (2000). https://doi.org/10.1016/S0002-9440(10)64951-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. W. Qing, W.-Y. Fang, L. Ye, L.-Y. Shen, X.-F. Zhang, X.-C. Fei, X. Chen, W.-Q. Wang, X.-Y. Li, J.-C. Xiao, G. Ning, Density of tumor-associated macrophages correlates with lymph node metastasis in papillary thyroid carcinoma. Thyroid 22(9), 905–910 (2012). https://doi.org/10.1089/thy.2011.0452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. N. Rodić, R.A. Anders, J.R. Eshleman, M.-T. Lin, H. Xu, J.H. Kim, K. Beierl, S. Chen, B.S. Luber, H. Wang, S.L. Topalian, D.M. Pardoll, J.M. Taube, PD-L1 expression in melanocytic lesions does not correlate with the BRAF V600E mutation. Cancer Immunol. Res. 3(2), 110–115 (2015). https://doi.org/10.1158/2326-6066.CIR-14-0145

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding from NIH to M.D.R. (R01CA102572 and R01CA227847).

Author contributions

N.R., T.K., and M.D.R. all contributed to the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Ringel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors have agreed to the final version of the publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, N., Khanal, T. & Ringel, M.D. Progression and dormancy in metastatic thyroid cancer: concepts and clinical implications. Endocrine 70, 24–35 (2020). https://doi.org/10.1007/s12020-020-02453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02453-8

Keywords

Navigation