Skip to main content

Advertisement

Log in

Prognostic impact of visit-to-visit glycemic variability on the risks of major adverse cardiovascular outcomes and hypoglycemia in patients with different glycemic control and type 2 diabetes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The prognostic impact of visit-to-visit glycemic variability on clinical outcomes in patients with different glycemic control and type 2 diabetes remains obscure. We investigated glucose variability and clinical outcomes for patients in the groups of Good glycemic control (GC), Insufficient glycemic control (IC), and Poor glycemic control (PC) in a prospective cohort study.

Methods

By using data from Action in Diabetes and Vascular disease: preterAx and diamicroN-MR Controlled Evaluation (ADVANCE), 930 patients were enrolled from 61 centers in China and grouped into GC, IC, and PC according to their glycated hemoglobin A1c (HbA1c) and fasting plasma glucose (FPG). Visit-to-visit glycemic variability was defined using the coefficient of variation (CV) of five measurements of HbA1c and FPG taken 3–24 months after treatment. Multivariable Cox proportional hazards models were employed to estimate adjusted hazard ratio (aHR).

Results

Among 930 patients in the intensive glucose control, 82, 538, and 310 patients were assigned to GC, IC, and PC, respectively. During the median of 4.8 years of follow-up, 322 patients were observed hypoglycemia and 244 patients experienced major adverse cardiovascular events (MACE). The CV of HbA1c and FPG was significantly lower for GC (6.0 ± 3.8, 11.2 ± 6.2) than IC (8.3 ± 5.6, 17.9 ± 10.6) and PC (9.5 ± 6.3, 19.3 ± 10.8). High glycemic variability was associated with a greater risk of MACE (aHR: 2.21; 95% confidence interval (CI): 1.61–3.03; p < 0.001) and hypoglycemia (aHR: 1.36; 95% CI: 1.04–1.79; p = 0.025) than low glycemic variability in total patients. The consistent trend was also found in subgroups of GC, IC, and PC.

Conclusions

This prospective cohort study showed that glycemic variability was significantly lower for GC than IC and PC. Furthermore, glycemic variability was associated with the risk of MACE and hypoglycemia in total patients and subgroups of different glycemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GC:

Good glycemic control

IC:

Insufficient glycemic control

PC:

Poor glycemic control

ADVANCE:

Action in Diabetes and Vascular disease: preterAx and diamicroN-MR Controlled Evaluation

HbA1c :

Glycated hemoglobin A1c

FPG:

Fasting plasma glucose

CV:

Coefficient of variation

aHR:

Adjusted hazard ratio

MACE:

Major adverse cardiovascular events

SD:

Standard deviations

BMI:

Body mass index

References

  1. International Diabetes Federation. IDF Diabetes Atlas, 8 edn. http://www.diabetesatlas.org (2017). Accessed 1 Dec 2017.

  2. A.K. Wright, E. Kontopantelis, R. Emsley, I. Buchan, N. Sattar, M.K. Rutter, D.M. Ashcroft, Life expectancy and cause-specific mortality in type 2 diabetes: a population-based cohort study quantifying relationships in ethnic subgroups. Diabetes Care 40(3), 338–345 (2017).

    Article  PubMed  Google Scholar 

  3. UK Prospective Diabetes Study (UKPDS) Group. UK Prospective Diabetes Study (UKPDS) GroupIntensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet (Lond., Engl.) 352(9131), 837–853 (1998).

  4. D.M. Nathan, S. Genuth, J. Lachin, P. Cleary, O. Crofford, M. Davis, L. Rand, C. Siebert, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329(14), 977–986 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. B. Hemmingsen, S.S. Lund, C. Gluud, A. Vaag, T. Almdal, C. Hemmingsen, J. Wetterslev, Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ 343, d6898 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. H.C. Gerstein, M.E. Miller, R.P. Byington, D.C. Goff Jr., J.T. Bigger, J.B. Buse, W.C. Cushman, S. Genuth, F. Ismail-Beigi, R.H. Grimm Jr., J.L. Probstfield, D.G. Simons-Morton, W.T. Friedewald, Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358(24), 2545–2559 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. D.E. Bonds, M.E. Miller, R.M. Bergenstal, J.B. Buse, R.P. Byington, J.A. Cutler, R.J. Dudl, F. Ismail-Beigi, A.R. Kimel, B. Hoogwerf, K.R. Horowitz, P.J. Savage, E.R. Seaquist, D.L. Simmons, W.I. Sivitz, J.M. Speril-Hillen, M.E. Sweeney, The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 340, b4909 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. B. Sun, F. He, L. Sun, J. Zhou, J. Shen, J. Xu, B. Wu, R. Liu, X. Wang, H. Xu, X. Chen, H. Zhou, Z. Liu, W. Zhang, Cause-specific risk of major adverse cardiovascular outcomes and hypoglycemic in patients with type 2 diabetes: a multicenter prospective cohort study. Endocrine (2018). https://doi.org/10.1007/s12020-018-1715-0.

  9. M. Kuroda, T. Shinke, H. Otake, D. Sugiyama, T. Takaya, H. Takahashi, D. Terashita, K. Uzu, N. Tahara, D. Kashiwagi, K. Kuroda, Y. Shinkura, Y. Nagasawa, K. Sakaguchi, Y. Hirota, W. Ogawa, K. Hirata, Effects of daily glucose fluctuations on the healing response to everolimus-eluting stent implantation as assessed using continuous glucose monitoring and optical coherence tomography. Cardiovasc. Diabetol. 15, 79 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Tschope, P. Bramlage, S. Schneider, A.K. Gitt, Incidence, characteristics and impact of hypoglycaemia in patients receiving intensified treatment for inadequately controlled type 2 diabetes mellitus. Diabetes Vasc. Dis. Res. 13(1), 2–12 (2016).

    Article  CAS  Google Scholar 

  11. Y. Hirakawa, H. Arima, S. Zoungas, T. Ninomiya, M. Cooper, P. Hamet et al., Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care 37, 2359–2365 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. L. Nalysnyk, M. Hernandez-Medina, G. Krishnarajah, Glycaemic variability and complications in patients with diabetes mellitus: evidence from a systematic review of the literature. Diabetes Obes. Metab. 12(4), 288–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. B. Zinman, S.P. Marso, N.R. Poulter, S.S. Emerson, T.R. Pieber, R.E. Pratley, M. Lange, K. Brown-Frandsen, A. Moses, A.M. Ocampo Francisco, J. Barner Lekdorf, K. Kvist, J.B. Buse, Day-to-day fasting glycaemic variability in DEVOTE: associations with severe hypoglycaemia and cardiovascular outcomes (DEVOTE 2). Diabetologia 61(1), 48–57 (2018).

    Article  PubMed  Google Scholar 

  14. A. Patel, S. MacMahon, J. Chalmers, B. Neal, L. Billot, M. Woodward, M. Marre, M. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Liu, G. Mancia, C.E. Mogensen, C. Pan, N. Poulter, A. Rodgers, B. Williams, S. Bompoint, B.E. de Galan, R. Joshi, F. Travert, Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358(24), 2560–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Rationale and design of the ADVANCE study: a randomised trial of blood pressure lowering and intensive glucose control in high-risk individuals with type 2 diabetes mellitus, Action in diabetes and vascular disease: PreterAx and DiamicroN modified-release controlled evaluation. J. Hypertens. Suppl. 19(4), S21–S28 (2001)

    Google Scholar 

  16. F. He, M. Liu, Z. Chen, G. Liu, Z. Wang, R. Liu, J. Luo, J. Tang, X. Wang, X. Liu, H. Zhou, X. Chen, Z. Liu, W. Zhang, Assessment of human tribbles homolog 3 genetic variation (rs2295490) effects on type 2 diabetes patients with glucose control and blood pressure lowering treatment. EBioMedicine 13, 181–189 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. J. Gu, Y.Q. Fan, J.F. Zhang, C.Q. Wang, Association of hemoglobin A1c variability and the incidence of heart failure with preserved ejection fraction in patients with type 2 diabetes mellitus and arterial hypertension. Hell. J. Cardiol. 59(2), 91–97 (2018).

    Article  Google Scholar 

  18. J. Gu, Y.Q. Fan, J.F. Zhang, C.Q. Wang, Impact of long-term glycemic variability on development of atrial fibrillation in type 2 diabetic patients. Anatol. J. Cardiol. 18(6), 410–416 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. C. Stettler, S. Allemann, P. Juni, C.A. Cull, R.R. Holman, M. Egger, S. Krahenbuhl, P. Diem, Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am. Heart J. 152(1), 27–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. I.M. Stratton, A.I. Adler, H.A. Neil, D.R. Matthews, S.E. Manley, C.A. Cull, D. Hadden, R.C. Turner, R.R. Holman, Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321(7258), 405–412 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M.S. Kirkman, M. McCarren, J. Shah, W. Duckworth, C. Abraira, The association between metabolic control and prevalent macrovascular disease in Type 2 diabetes: the VA Cooperative Study in diabetes. J. Diabetes Complicat. 20(2), 75–80 (2006).

    Article  Google Scholar 

  22. C.R.L. Cardoso, N.C. Leite, C.B.M. Moram, G.F. Salles, Long-term visit-to-visit glycemic variability as predictor of micro- and macrovascular complications in patients with type 2 diabetes: The Rio de Janeiro Type 2 Diabetes Cohort Study. Cardiovasc. Diabetol. 17(1), 33 (2018). https://doi.org/10.1186/s12933-018-0677-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. P.E. Cryer, Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63(7), 2188–2195 (2014). https://doi.org/10.2337/db14-0059.

    Article  PubMed  Google Scholar 

  24. S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters, A. Tsapas, R. Wender, D.R. Matthews, Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38(1), 140–149 (2015).

    Article  PubMed  Google Scholar 

  25. K.J. Lipska, H. Krumholz, T. Soones, S.J. Lee, Polypharmacy in the aging patient: a review of glycemic control in older adults with type 2 diabetes. J. Am. Med Assoc. 315(10), 1034–1045 (2016).

    Article  CAS  Google Scholar 

  26. D. Cheng, Y. Fei, Y. Liu, J. Li, Q. Xue, X. Wang, N. Wang, HbA1C variability and the risk of renal status progression in Diabetes Mellitus: a meta-analysis. PLoS ONE 9(12), e115509 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. C. Gorst, C.S. Kwok, S. Aslam, I. Buchan, E. Kontopantelis, P.K. Myint, G. Heatlie, Y. Loke, M.K. Rutter, M.A. Mamas, Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care 38(12), 2354–2369 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. G. Penno, A. Solini, G. Zoppini, E. Orsi, C. Fondelli, G. Zerbini, S. Morano, F. Cavalot, O. Lamacchia, R. Trevisan, M. Vedovato, G. Pugliese, Hemoglobin A1c variability as an independent correlate of cardiovascular disease in patients with type 2 diabetes: a cross-sectional analysis of the renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Cardiovasc. Diabetol. 12, 98 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. E.S. Kilpatrick, A.S. Rigby, S.L. Atkin, The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care 29(7), 1486–1490 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. R. Borg, J.C. Kuenen, B. Carstensen, H. Zheng, D.M. Nathan, R.J. Heine, J. Nerup, K. Borch-Johnsen, D.R. Witte, HbA(1)(c) and mean blood glucose show stronger associations with cardiovascular disease risk factors than do postprandial glycaemia or glucose variability in persons with diabetes: the A1C-Derived Average Glucose (ADAG) study. Diabetologia 54(1), 69–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. C.E. Mendez, K.T. Mok, A. Ata, R.J. Tanenberg, J. Calles-Escandon, G.E. Umpierrez, Increased glycemic variability is independently associated with length of stay and mortality in noncritically ill hospitalized patients. Diabetes Care 36(12), 4091–4097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Zoungas, J. Chalmers, B. Neal, L. Billot, Q. Li, Y. Hirakawa, H. Arima, H. Monaghan, R. Joshi, S. Colagiuri, M.E. Cooper, P. Glasziou, D. Grobbee, P. Hamet, S. Harrap, S. Heller, L. Lisheng, G. Mancia, M. Marre, D.R. Matthews, C.E. Mogensen, V. Perkovic, N. Poulter, A. Rodgers, B. Williams, S. MacMahon, A. Patel, M. Woodward, Follow-up of blood-pressure lowering and glucose control in type 2 diabetes. N. Engl. J. Med. 371(15), 1392–1406 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. H.C. Gerstein, M.E. Miller, F. Ismail-Beigi, J. Largay, C. McDonald, H.A. Lochnan, G.L. Booth, Effects of intensive glycaemic control on ischaemic heart disease: analysis of data from the randomised, controlled ACCORD trial. Lancet (Lond., Engl.) 384(9958), 1936–1941 (2014).

    Article  Google Scholar 

  34. M. Yamazaki, G. Hasegawa, S. Majima, K. Mitsuhashi, T. Fukuda, H. Iwase, M. Kadono, M. Asano, T. Senmaru, M. Tanaka, M. Fukui, N. Nakamura, Effect of repaglinide versus glimepiride on daily blood glucose variability and changes in blood inflammatory and oxidative stress markers. Diabetol. Metab. Syndr. 6, 54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chinese Diabetes Society. China guideline for type 2 diabetes (2013). China J. Diabetes Mellitus 22(8), 447–498 (2014).

  36. K. Omori, H. Nomoto, A. Nakamura, Reduction in glucose fluctuations in elderly patients with type 2 diabetes using repaglinide: a randomized controlled trial of repaglinide vs sulfonylurea. J. Diabetes Investig. (2018). https://doi.org/10.1111/jdi.12889.

  37. N.A. Thornberry, B. Gallwitz, Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract. Clin. Endocrinol. Metab. 23(4), 479–486 (2009).

    Article  CAS  Google Scholar 

  38. L. Monnier, E. Mas, C. Ginet, F. Michel, L. Villon, J.P. Cristol, C. Colette, Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. J. Am. Med Assoc. 295(14), 1681–1687 (2006).

    Article  CAS  Google Scholar 

  39. A. Ceriello, M.A. Ihnat, “Glycaemic variability”: a new therapeutic challenge in diabetes and the critical care setting. Diabet. Med. 27(8), 862–867 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of ADVANCE group at 61 centers in China. We also thank all patients and participants who have contributed to the register.

Funding

This research was funded by grants from National Key Research and Development Program (No. 2016YFC0905000), National Natural Science Foundation of China (Nos. 81522048, 81573511, and 81874329) and the Innovation Driven Project of Central South University (No. 2016CX024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local ethics committee and was in accordance with the 1964 Declaration of Helsinki and its later amendmentsmed consent.

Informed consent

All patients provide written informed consent.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Bao Sun, Fazhong He

Supplementary information

12020_2019_1893_MOESM1_ESM.docx

Supplementary table (We found some mistakes in the Supplementary Table 1. So we validated the original data and replaced it by a new Supplementary Table 1 in the attachments.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., He, F., Gao, Y. et al. Prognostic impact of visit-to-visit glycemic variability on the risks of major adverse cardiovascular outcomes and hypoglycemia in patients with different glycemic control and type 2 diabetes. Endocrine 64, 536–543 (2019). https://doi.org/10.1007/s12020-019-01893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01893-1

Keywords

Navigation