Skip to main content
Log in

Glycated albumin: from biochemistry and laboratory medicine to clinical practice

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

This review summarizes current knowledge about glycated albumin. We review the changes induced by glycation on the properties of albumin, the pathological implications of high glycated albumin levels, glycated albumin quantification methods, and the use of glycated albumin as a complementary biomarker for diabetes mellitus diagnosis and monitoring and for dealing with long-term complications. The advantages and limits of this biomarker in different clinical settings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Theodore Peters, All about Albumin. Academic Press, (1995)

  2. P.J. Thornalley, A. Langborg, H.S. Minhas, Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344(Pt 1), 109–116 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. K.J. Kim, B.W. Lee, The roles of glycated albumin as intermediate glycation index and pathogenic protein. Diabetes Metab. J. 36(2), 98–107 (2012). doi:10.4093/dmj.2012.36.2.98

    Article  PubMed  PubMed Central  Google Scholar 

  4. F.N. Ziyadeh, D.C. Han, J.A. Cohen, J. Guo, M.P. Cohen, Glycated albumin stimulates fibronectin gene expression in glomerular mesangial cells: involvement of the transforming growth factor-beta system. Kidney Int. 53(3), 631–638 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. S.L. Jeffcoate, Diabetes control and complications: the role of glycated haemoglobin, 25 years on. Diabet. Med. 21(7), 657–665 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. J.W. Hartog, A.A. Voors, S.J. Bakker, A.J. Smit, D.J. van Veldhuisen, Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur. J. Heart Fail 9(12), 1146–1155 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin. Nature 358(6383), 209–215 (1992)

    Article  CAS  PubMed  Google Scholar 

  8. K. Oettl, R.E. Stauber, Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br. J. Pharmacol. 151(5), 580–590 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. Sudlow, D.J. Birkett, D.N. Wade, The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 11(6), 824–832 (1975)

    CAS  PubMed  Google Scholar 

  10. U. Kragh-Hansen, V.T. Chuang, M. Otagiri, Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull. 25(6), 695–704 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. M. Otagiri, A molecular functional study on the interactions of drugs with plasma proteins. Drug Metab. Pharmacokinet. 20(5), 309–323 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. J.R. Simard, P.A. Zunszain, C.E. Ha, J.S. Yang, N.V. Bhagavan, I. Petitpas, S. Curry, J.A. Hamilton, Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proc. Natl. Acad. Sci. USA 102(50), 17958–17963 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.E. Eom, E. Lee, K.H. Jeon, J. Sim, M. Suh, G.J. Jhon, Y. Kwon, Development of an albumin copper binding (ACuB) assay to detect ischemia modified albumin. Anal. Sci. 30(10), 985–990 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. J. Masuoka, P. Saltman, Zinc(II) and copper(II) binding to serum albumin. A comparative study of dog, bovine, and human albumin. J. Biol. Chem. 269(41), 25557–25561 (1994)

    CAS  PubMed  Google Scholar 

  15. A. Loban, R. Kime, H. Powers, Iron-binding antioxidant potential of plasma albumin. Clin. Sci. (Lond.) 93(5), 445–451 (1997)

    Article  CAS  Google Scholar 

  16. S. Curry, H. Mandelkow, P. Brick, N. Franks, Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5(9), 827–835 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. S.J. Cho, G. Roman, F. Yeboah, Y. Konishi, The road to advanced glycation end products: a mechanistic perspective. Curr. Med. Chem. 14(15), 1653–1671 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. F. Monacelli, D. Storace, C. D’Arrigo, R. Sanguineti, R. Borghi, D. Pacini, A.L. Furfaro, M.A. Pronzato, P. Odetti, N. Traverso, Structural alterations of human serum albumin caused by glycative and oxidative stressors revealed by circular dichroism analysis. Int. J. Mol. Sci. 14(6), 10694–10709 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  19. J. Baraka-Vidot, C. Planesse, O. Meilhac, V. Militello, J. van den Elsen, E. Bourdon, P. Rondeau, Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin. Biochemistry 54(19), 3051–3062 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. J.F. Day, S.R. Thorpe, J.W. Baynes, Nonenzymatically glucosylated albumin. In vitro preparation and isolation from normal human serum. J. Biol. Chem. 254(3), 595–597 (1979)

    CAS  PubMed  Google Scholar 

  21. N. Iberg, R. Fluckiger, Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J. Biol. Chem. 261(29), 13542–13545 (1986)

    CAS  PubMed  Google Scholar 

  22. H. Zoellner, J.Y. Hou, T. Hochgrebe, A. Poljak, M.W. Duncan, J. Golding, T. Henderson, G. Lynch, Fluorometric and mass spectrometric analysis of nonenzymatic glycosylated albumin. Biochem. Biophys. Res. Commun. 284(1), 83–89 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. A. Frolov, R. Hoffmann, Identification and relative quantification of specific glycation sites in human serum albumin. Anal. Bioanal. Chem. 397(6), 2349–2356 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. O.S. Barnaby, R.L. Cerny, W. Clarke, D.S. Hage, Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling and MALDI-TOF MS. Clin. Chim. Acta 412(17-18), 1606–1615 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Awasthi, N.A. Murugan, N.T. Saraswathi, Advanced glycation end products modulate structure and drug binding properties of albumin. Mol. Pharm. 12(9), 3312–3322 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. F.L. Brancia, J.Z. Bereszczak, A. Lapolla, D. Fedele, L. Baccarin, R. Seraglia, P. Traldi, Comprehensive analysis of glycated human serum albumin tryptic peptides by off-line liquid chromatography followed by MALDI analysis on a time-of-flight/curved field reflectron tandem mass spectrometer. J. Mass Spectrom. 41(9), 1179–1185 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. C. Wa, R.L. Cerny, W.A. Clarke, D.S. Hage, Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chim. Acta 385(1-2), 48–60 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O.S. Barnaby, R.L. Cerny, W. Clarke, D.S. Hage, Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin. Chim. Acta 412(3-4), 277–285 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. A. Barzegar, A.A. Moosavi-Movahedi, N. Sattarahmady, M.A. Hosseinpour-Faizi, M. Aminbakhsh, F. Ahmad, A.A. Saboury, M.R. Ganjali, P. Norouzi, Spectroscopic studies of the effects of glycation of human serum albumin on L-Trp binding. Protein Pept. Lett. 14(1), 13–18 (2007)

    Article  CAS  PubMed  Google Scholar 

  30. R. Kisugi, T. Kouzuma, T. Yamamoto, S. Akizuki, H. Miyamoto, Y. Someya, J. Yokoyama, I. Abe, N. Hirai, A. Ohnishi, Structural and glycation site changes of albumin in diabetic patient with very high glycated albumin. Clin. Chim. Acta 382(1-2), 59–64 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. K.S. Joseph, A.C. Moser, S.B. Basiaga, J.E. Schiel, D.S. Hage, Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin: characterization by high-performance affinity chromatography. J. Chromatogr. A 1216(16), 3492–3500 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. K.S. Joseph, D.S. Hage, The effects of glycation on the binding of human serum albumin to warfarin and L-tryptophan. J. Pharm. Biomed. Anal. 53(3), 811–818 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Baraka-Vidot, A. Guerin-Dubourg, E. Bourdon, P. Rondeau, Impaired drug-binding capacities of in vitro and in vivo glycated albumin. Biochimie 94(9), 1960–1967 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. R. Matsuda, J. Anguizola, K.S. Joseph, D.S. Hage, Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin. J. Chromatogr. A 1265, 114–122 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J. Anguizola, R. Matsuda, O.S. Barnaby, K.S. Hoy, C. Wa, E. DeBolt, M. Koke, D.S. Hage, Review: glycation of human serum albumin. Clin. Chim. Acta 425, 64–76 (2013)

    Article  CAS  PubMed  Google Scholar 

  36. F.N. Ziyadeh, M.P. Cohen, Effects of glycated albumin on mesangial cells: evidence for a role in diabetic nephropathy. Mol. Cell. Biochem. 125(1), 19–25 (1993)

    Article  CAS  PubMed  Google Scholar 

  37. S. Chen, M.P. Cohen, F.N. Ziyadeh, Amadori-glycated albumin in diabetic nephropathy: pathophysiologic connections. Kidney Int. Suppl. 77, S40–S44 (2000)

    Article  CAS  PubMed  Google Scholar 

  38. C. Jin, L. Lu, R.Y. Zhang, Q. Zhang, F.H. Ding, Q.J. Chen, W.F. Shen, Association of serum glycated albumin, C-reactive protein and ICAM-1 levels with diffuse coronary artery disease in patients with type 2 diabetes mellitus. Clin. Chim. Acta 408(1-2), 45–49 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. D.A. Rubenstein, Z. Maria, W. Yin, Glycated albumin modulates endothelial cell thrombogenic and inflammatory responses. J. Diabetes Sci. Technol. 5(3), 703–713 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  40. D. Blache, E. Bourdon, P. Salloignon, G. Lucchi, P. Ducoroy, J.M. Petit, B. Verges, L. Lagrost, Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes. Diabetes 64(3), 960–972 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. A. Bierhaus, P.M. Humpert, M. Morcos, T. Wendt, T. Chavakis, B. Arnold, D.M. Stern, P.P. Nawroth, Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. (Berl.) 83(11), 876–886 (2005)

    Article  CAS  Google Scholar 

  42. A. Stirban, T. Gawlowski, M. Roden, Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol. Metab. 3(2), 94–108 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. E. Shim, J.P. Babu, Glycated albumin produced in diabetic hyperglycemia promotes monocyte secretion of inflammatory cytokines and bacterial adherence to epithelial cells. J. Periodontal. Res. 50(2), 197–204 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. C. Miele, A. Riboulet, M.A. Maitan, F. Oriente, C. Romano, P. Formisano, J. Giudicelli, F. Beguinot, E. Van Obberghen, Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism. J. Biol. Chem. 278(48), 47376–47387 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. K. Shima, N. Ito, F. Abe, M. Hirota, M. Yano, Y. Yamamoto, T. Uchida, K. Noguchi, High-performance liquid chromatographic assay of serum glycated albumin. Diabetologia 31(8), 627–631 (1988)

    Article  CAS  PubMed  Google Scholar 

  46. K. Yasukawa, F. Abe, N. Shida, Y. Koizumi, T. Uchida, K. Noguchi, K. Shima, High-performance affinity chromatography system for the rapid, efficient assay of glycated albumin. J. Chromatogr. 597(1-2), 271–275 (1992)

    Article  CAS  PubMed  Google Scholar 

  47. T. Kouzuma, T. Usami, M. Yamakoshi, M. Takahashi, S. Imamura, An enzymatic method for the measurement of glycated albumin in biological samples. Clin. Chim. Acta 324(1-2), 61–71 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. T. Kohzuma, T. Yamamoto, Y. Uematsu, Z.K. Shihabi, B.I. Freedman, Basic performance of an enzymatic method for glycated albumin and reference range determination. J. Diabetes Sci. Technol. 5(6), 1455–1462 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Takei, I., Hoshino, T., Tominaga, M., Ishibashi, M., Kuwa, K., Umemoto, M., Tani, W., Okahashi, M., Yasukawa, K., Kohzuma, T., Sato, A.: Committee on diabetes mellitus indices of the Japan society of clinical chemistry-recommended reference measurement procedure and reference materials for glycated albumin determination. Ann. Clin. Biochem. (2015)

  50. T. Shafi, S.M. Sozio, L.C. Plantinga, B.G. Jaar, E.T. Kim, R.S. Parekh, M.W. Steffes, N.R. Powe, J. Coresh, E. Selvin, Serum fructosamine and glycated albumin and risk of mortality and clinical outcomes in hemodialysis patients. Diabetes Care 36(6), 1522–1533 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. E.D. Schleicher, R. Mayer, E.M. Wagner, K.D. Gerbitz, Is serum fructosamine assay specific for determination of glycated serum protein? Clin. Chem. 34(2), 320–323 (1988)

    CAS  PubMed  Google Scholar 

  52. K. Rodriguez-Capote, K. Tovell, D. Holmes, J. Dayton, T.N. Higgins, Analytical evaluation of the diazyme glycated serum protein assay on the siemens ADVIA 1800: comparison of results against HbA1c for diagnosis and management of diabetes. J. Diabetes Sci. Technol. 9(2), 192–199 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Takahashi, H. Uchino, T. Shimizu, A. Kanazawa, Y. Tamura, K. Sakai, H. Watada, T. Hirose, R. Kawamori, Y. Tanaka, Comparison of glycated albumin (GA) and glycated hemoglobin (HbA1c) in type 2 diabetic patients: usefulness of GA for evaluation of short-term changes in glycemic control. Endocr. J. 54(1), 139–144 (2007)

    Article  CAS  PubMed  Google Scholar 

  54. N. Furusyo, T. Koga, M. Ai, S. Otokozawa, T. Kohzuma, H. Ikezaki, E.J. Schaefer, J. Hayashi, Utility of glycated albumin for the diagnosis of diabetes mellitus in a Japanese population study: results from the Kyushu and Okinawa Population Study (KOPS). Diabetologia 54(12), 3028–3036 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. H. Ikezaki, N. Furusyo, T. Ihara, T. Hayashi, K. Ura, S. Hiramine, F. Mitsumoto, K. Takayama, M. Murata, T. Kohzuma, M. Ai, E.J. Schaefer, J. Hayashi, Glycated albumin as a diagnostic tool for diabetes in a general Japanese population. Metabolism 64(6), 698–705 (2015)

    Article  CAS  PubMed  Google Scholar 

  56. P. Gram-Hansen, J. Eriksen, T. Mourits-Andersen, L. Olesen, Glycosylated haemoglobin (HbA1c) in iron- and vitamin B12 deficiency. J. Intern. Med. 227(2), 133–136 (1990)

    Article  CAS  PubMed  Google Scholar 

  57. E. Coban, M. Ozdogan, A. Timuragaoglu, Effect of iron deficiency anemia on the levels of hemoglobin A1c in nondiabetic patients. Acta Haematol. 112(3), 126–128 (2004)

    Article  CAS  PubMed  Google Scholar 

  58. C. Kim, K.M. Bullard, W.H. Herman, G.L. Beckles, Association between iron deficiency and A1C Levels among adults without diabetes in the National Health and Nutrition Examination Survey, 1999-2006. Diabetes Care 33(4), 780–785 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. D. Church, D. Simmons, More evidence of the problems of using HbA1c for diagnosing diabetes? The known knowns, the known unknowns and the unknown unknowns. J. Intern. Med. 276(2), 171–173 (2014)

    Article  CAS  PubMed  Google Scholar 

  60. R.M. Cohen, R.S. Franco, P.K. Khera, E.P. Smith, C.J. Lindsell, P.J. Ciraolo, M.B. Palascak, C.H. Joiner, Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 112(10), 4284–4291 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M. Koga, H. Saito, M. Mukai, S. Matsumoto, S. Kasayama, Influence of iron metabolism indices on glycated haemoglobin but not glycated albumin levels in premenopausal women. Acta Diabetol. 47(Suppl 1), 65–69 (2010)

    Article  CAS  PubMed  Google Scholar 

  62. C. Krzisnik, J. Lukac-Bajalo, Glycosylated hemoglobin in fractions of erythrocytes of different ages. J. Endocrinol. Invest. 16(7), 495–498 (1993)

    Article  CAS  PubMed  Google Scholar 

  63. M.S. Radin, Pitfalls in hemoglobin A1c measurement: when results may be misleading. J. Gen. Intern. Med. 29(2), 388–394 (2014)

    Article  PubMed  Google Scholar 

  64. R.L. Phelps, G.R. Honig, D. Green, B.E. Metzger, M.C. Frederiksen, N. Freinkel, Biphasic changes in hemoglobin A1c concentrations during normal human pregnancy. Am. J. Obstet. Gynecol. 147(6), 651–653 (1983)

    Article  CAS  PubMed  Google Scholar 

  65. K. Hashimoto, S. Noguchi, Y. Morimoto, S. Hamada, K. Wasada, S. Imai, Y. Murata, S. Kasayama, M. Koga, A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care 31(10), 1945–1948 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. K. Hashimoto, T. Osugi, S. Noguchi, Y. Morimoto, K. Wasada, S. Imai, M. Waguri, R. Toyoda, T. Fujita, S. Kasayama, M. Koga, A1C but not serum glycated albumin is elevated because of iron deficiency in late pregnancy in diabetic women. Diabetes Care 33(3), 509–511 (2010)

    Article  CAS  PubMed  Google Scholar 

  67. S. Suzuki, M. Koga, S. Amamiya, A. Nakao, K. Wada, K. Okuhara, S. Hayano, A.R. Sarhat, H. Takahashi, K. Matsuo, Y. Tanahashi, K. Fujieda, Glycated albumin but not HbA1c reflects glycaemic control in patients with neonatal diabetes mellitus. Diabetologia 54(9), 2247–2253 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. B.I. Freedman, R.N. Shenoy, J.A. Planer, K.D. Clay, Z.K. Shihabi, J.M. Burkart, C.Y. Cardona, L. Andries, T.P. Peacock, H. Sabio, J.R. Byers, G.B. Russell, A.J. Bleyer, Comparison of glycated albumin and hemoglobin A1c concentrations in diabetic subjects on peritoneal and hemodialysis. Perit. Dial. Int. 30(1), 72–79 (2010)

    Article  CAS  PubMed  Google Scholar 

  69. B.I. Freedman, Z.K. Shihabi, L. Andries, C.Y. Cardona, T.P. Peacock, J.R. Byers, G.B. Russell, R.J. Stratta, A.J. Bleyer, Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am. J. Nephrol. 31(5), 375–379 (2010)

    Article  CAS  PubMed  Google Scholar 

  70. A.E. Sumner, M.T. Duong, P.C. Aldana, M. Ricks, M.K. Tulloch-Reid, J.N. Lozier, S.T. Chung, D.B. Sacks, A1C combined with glycated albumin improves detection of prediabetes in Africans: the Africans in America study. Diabetes Care 39(2), 271–277 (2016)

    CAS  PubMed  Google Scholar 

  71. M. Alssema, H.M. Boers, A. Ceriello, E.S. Kilpatrick, D.J. Mela, M.G. Priebe, P. Schrauwen, B.H. Wolffenbuttel, A.F. Pfeiffer, Diet and glycaemia: the markers and their meaning. A report of the Unilever Nutrition Workshop. Br. J. Nutr. 113(2), 239–248 (2015)

    Article  CAS  PubMed  Google Scholar 

  72. K. Noda, B. Zhang, A. Iwata, H. Nishikawa, M. Ogawa, T. Nomiyama, S. Miura, H. Sako, K. Matsuo, E. Yahiro, T. Yanase, K. Saku, Lifestyle changes through the use of delivered meals and dietary counseling in a single-blind study. The STYLIST study. Circ. J. 76(6), 1335–1344 (2015)

    Article  Google Scholar 

  73. J. Murai, S. Soga, H. Saito, M. Koga, Usefulness of glycated albumin for early detection of deterioration of glycemic control state after discharge from educational admission. Endocr. J. 60(4), 409–413 (2013)

    CAS  PubMed  Google Scholar 

  74. M. Koga, J. Murai, H. Saito, S. Kasayama, A. Imagawa, T. Hanafusa, T. Kobayashi, Serum glycated albumin to haemoglobin A(1C) ratio can distinguish fulminant type 1 diabetes mellitus from type 2 diabetes mellitus. Ann. Clin. Biochem. 47(Pt 4), 313–317 (2010)

    Article  CAS  PubMed  Google Scholar 

  75. Y. Ueda, H. Matsumoto, Recent topics in chemical and clinical research on glycated albumin. J. Diabetes Sci. Technol. 9(2), 177–182 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. M. Tominaga, H. Eguchi, H. Manaka, K. Igarashi, T. Kato, A. Sekikawa, Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care 22(6), 920–924 (1999)

    Article  CAS  PubMed  Google Scholar 

  77. The DECODE study group. European Diabetes Epidemiology Group, Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. Diabetes epidemiology: collaborative analysis of diagnostic criteria in Europe. Lancet 354(9179), 617–621 (1999)

    Article  Google Scholar 

  78. R.J. Heine, B. Balkau, A. Ceriello, S. Del Prato, E.S. Horton, M.R. Taskinen, What does postprandial hyperglycaemia mean? Diabet. Med. 21(3), 208–213 (2004)

    Article  CAS  PubMed  Google Scholar 

  79. K. Yoshiuchi, M. Matsuhisa, N. Katakami, Y. Nakatani, K. Sakamoto, T. Matsuoka, Y. Umayahara, K. Kosugi, H. Kaneto, Y. Yamasaki, M. Hori, Glycated albumin is a better indicator for glucose excursion than glycated hemoglobin in type 1 and type 2 diabetes. Endocr. J. 55(3), 503–507 (2008)

    Article  CAS  PubMed  Google Scholar 

  80. M. Koga, J. Murai, H. Saito, S. Kasayama, Glycated albumin and glycated hemoglobin are influenced differently by endogenous insulin secretion in patients with type 2 diabetes. Diabetes Care 33(2), 270–272 (2010)

    Article  CAS  PubMed  Google Scholar 

  81. M. Koga, J. Murai, H. Saito, M. Mukai, S. Matsumoto, S. Kasayama, Glycated albumin levels are higher relative to glycated haemoglobin levels in gastrectomized subjects. Ann. Clin. Biochem. 47(Pt 1), 39–43 (2010)

    Article  CAS  PubMed  Google Scholar 

  82. E. Selvin, A.M. Rawlings, M. Grams, R. Klein, A.R. Sharrett, M. Steffes, J. Coresh, Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the atherosclerosis risk in communities (ARIC) study. Lancet Diabetes Endocrinol. 2(4), 279–288 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  83. D.M. Nathan, P. McGee, M.W. Steffes, J.M. Lachin, D.E.R. Group, Relationship of glycated albumin to blood glucose and HbA1c values and to retinopathy, nephropathy, and cardiovascular outcomes in the DCCT/EDIC study. Diabetes 63(1), 282–290 (2014)

    Article  CAS  PubMed  Google Scholar 

  84. N. Furusyo, T. Koga, M. Ai, S. Otokozawa, T. Kohzuma, H. Ikezaki, E.J. Schaefer, J. Hayashi, Plasma glycated albumin level and atherosclerosis: results from the Kyushu and Okinawa Population Study (KOPS). Int. J. Cardiol. 167(5), 2066–2072 (2013)

    Article  PubMed  Google Scholar 

  85. X. Ma, Y. Shen, X. Hu, Y. Hao, Y. Luo, J. Tang, J. Zhou, Y. Bao, W. Jia, Associations of glycated haemoglobin A1c and glycated albumin with subclinical atherosclerosis in middle-aged and elderly Chinese population with impaired glucose regulation. Clin. Exp. Pharmacol. Physiol. 42(6), 582–587 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. M. Inaba, S. Okuno, Y. Kumeda, S. Yamada, Y. Imanishi, T. Tabata, M. Okamura, S. Okada, T. Yamakawa, E. Ishimura, Y. Nishizawa, C.K.D.E.R.G. Osaka, Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J. Am. Soc. Nephrol. 18(3), 896–903 (2007)

    Article  CAS  PubMed  Google Scholar 

  87. M. Koga, J. Murai, H. Saito, S. Matsumoto, S. Kasayama, Effects of thyroid hormone on serum glycated albumin levels: study on non-diabetic subjects. Diabetes Res. Clin. Pract. 84(2), 163–167 (2009)

    Article  CAS  PubMed  Google Scholar 

  88. R. Nishimura, A. Kanda, H. Sano, T. Matsudaira, Y. Miyashita, A. Morimoto, T. Shirasawa, T. Kawaguchi, N. Tajima, Glycated albumin is low in obese, non-diabetic children. Diabetes Res. Clin. Pract. 71(3), 334–338 (2006)

    Article  CAS  PubMed  Google Scholar 

  89. M. Koga, M. Otsuki, S. Matsumoto, H. Saito, M. Mukai, S. Kasayama, Negative association of obesity and its related chronic inflammation with serum glycated albumin but not glycated hemoglobin levels. Clin. Chim. Acta 378(1-2), 48–52 (2007)

    Article  CAS  PubMed  Google Scholar 

  90. M. Koga, J. Murai, H. Saito, M. Mukai, S. Kasayama, Serum glycated albumin, but not glycated haemoglobin, is low in relation to glycemia in hyperuricemic men. Acta Diabetol. 47(2), 173–177 (2010)

    Article  CAS  PubMed  Google Scholar 

  91. M. Koga, J. Murai, H. Saito, M. Mukai, S. Kasayama, Serum glycated albumin, but not glycated hemoglobin, is low in relation to glycemia in men with hypertriglyceridemia. J. Diabetes Investig. 1(5), 202–207 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. M. Koga, J. Murai, H. Saito, M. Mukai, S. Kasayama, Serum glycated albumin levels, but not glycated hemoglobin, is low in relation to glycemia in non-diabetic men with nonalcoholic fatty liver disease with high alanine aminotransferase levels. Clin. Biochem. 43(12), 1023–1025 (2010)

    Article  CAS  PubMed  Google Scholar 

  93. T. Trenti, A. Cristani, G. Cioni, R. Pentore, C. Mussini, E. Ventura, Fructosamine and glycated hemoglobin as indices of glycemic control in patients with liver cirrhosis. Ric. Clin. Lab. 20(4), 261–267 (1990)

    CAS  PubMed  Google Scholar 

  94. M. Koga, S. Kasayama, H. Kanehara, Y. Bando, CLD (chronic liver diseases)-HbA1C as a suitable indicator for estimation of mean plasma glucose in patients with chronic liver diseases. Diabetes Res. Clin. Pract. 81(2), 258–262 (2008)

    Article  CAS  PubMed  Google Scholar 

  95. Y. Bando, H. Kanehara, D. Toya, N. Tanaka, S. Kasayama, M. Koga, Association of serum glycated albumin to haemoglobin A1C ratio with hepatic function tests in patients with chronic liver disease. Ann. Clin. Biochem. 46(Pt 5), 368–372 (2009)

    Article  CAS  PubMed  Google Scholar 

  96. T. Araki, Y. Ishikawa, H. Okazaki, Y. Tani, S. Toyooka, M. Satake, U. Miwa, K. Tadokoro, Introduction of glycated albumin measurement for all blood donors and the prevalence of a high glycated albumin level in Japan. J. Diabetes Investig. 3(6), 492–497 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. M. Ai, S. Otokozawa, E.J. Schaefer, B.F. Asztalos, K. Nakajima, P. Shrader, S. Kathiresan, J.B. Meigs, G. Williams, D.M. Nathan, Glycated albumin and direct low density lipoprotein cholesterol levels in type 2 diabetes mellitus. Clin. Chim. Acta 406(1-2), 71–74 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. ADA, Standards of medical care in diabetes-2015: summary of revisions. Diabetes Care 38(Suppl), S4 (2015)

    Google Scholar 

  99. American Diabetes, A, Standards of medical care in diabetes-2015 abridged for primary care providers. Clin. Diabetes 33(2), 97–111 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ms Judith Baggott for English-language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Marco Corsi Romanelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dozio, E., Di Gaetano, N., Findeisen, P. et al. Glycated albumin: from biochemistry and laboratory medicine to clinical practice. Endocrine 55, 682–690 (2017). https://doi.org/10.1007/s12020-016-1091-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1091-6

Keywords

Navigation