Skip to main content

Advertisement

Log in

Diet-induced obesity and prenatal undernutrition lead to differential neuroendocrine gene expression in the hypothalamic arcuate nuclei

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Previously we reported that prenatal undernutrition (UN) leads to a dysregulation of appetite suppression through alterations in hypothalamic neuropeptide gene expression. In the current study, we expand our observations and investigate neuroendocrine transcriptional responses and central leptin sensitivity within the arcuate nucleus of rats exposed to prenatal UN or a postnatal high-fat diet (HF). Pregnant Wistar rats were fed a standard chow diet either ad libitum (AD) or at 30 % of AD intake throughout gestation (UN) resulting in either control or intrauterine growth-restricted female offspring. At weaning, AD offspring were fed either a chow (C) or a HF (30 % fat wt/wt) diet ad libitum for the remainder of the study, whereas UN offspring were fed a chow diet only. At ~142 days, AD and UN offspring received either recombinant rat leptin (L) or saline (S) subcutaneously for 14 days. Prenatal UN had a significant effect on hypothalamic NPY (P < 0.0001), AgRP (P < 0.01) and ObRb (P < 0.02) mRNA expression compared to AD chow-fed offspring. A postnatal HF diet had a significant effect on AgRP mRNA expression (P < 0.001), compared to AD chow-fed offspring, but no effect on NPY and ObRb expression. Leptin treatment, in both UN and HF offspring, was ineffective in reducing NPY and AgRP mRNA expression, and had no effect on ObRb expression. These findings suggest that prenatal UN and a postnatal HF diet lead to differential neuroendocrine gene expression in the hypothalamic arcuate nuclei and reduced sensitivity to leptin’s anorexigenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.M. Popkin, L.S. Adair, S.W. Ng, Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 70(1), 3–21 (2012). doi:10.1111/j.1753-4887.2011.00456.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. WHO, World health statistics 2014 (World Health Organization, Geneva, 2014)

    Google Scholar 

  3. P. Gluckman, S. Nishtar, T. Armstrong, Ending childhood obesity: a multidimensional challenge. Lancet 385(9973), 1048–1050 (2015). doi:10.1016/S0140-6736(15)60509-8

    Article  PubMed  Google Scholar 

  4. J.G. Eriksson, S. Sandboge, M.K. Salonen, E. Kajantie, C. Osmond, Long-term consequences of maternal overweight in pregnancy on offspring later health: findings from the Helsinki Birth Cohort Study. Ann. Med. 46(6), 434–438 (2014). doi:10.3109/07853890.2014.919728

    Article  PubMed  Google Scholar 

  5. B.H. Breier, M.H. Vickers, B.A. Ikenasio, K.Y. Chan, W.P.S. Wong, Fetal programming of appetite and obesity. Mol. Cell. Endocrinol. 185, 73–79 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. S. Bouret, B.E. Levin, S.E. Ozanne, Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol. Rev. 95(1), 47–82 (2015). doi:10.1152/physrev.00007.2014

    Article  PubMed  PubMed Central  Google Scholar 

  7. P.D. Gluckman, M.A. Hanson, Living with the past: evolution, development, and patterns of disease. Science 305, 1733–1736 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. P. Gluckman, M.A. Hanson (ed.), Developmental Origins of Health and Disease (Cambridge University Press, Cambridge, 2006)

  9. S.O. Krechowec, M. Vickers, A. Gertler, B.H. Breier, Prenatal influences on leptin sensitivity and susceptibility to diet-induced obesity. J. Endocrinol. 189, 355–363 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. M.H. Vickers, B.H. Breier, W.S. Cutfield, P.L. Hofman, P.D. Gluckman, Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am. Physiol. Soc. 279, 83–87 (2000)

    Google Scholar 

  11. A. Plagemann, T. Harder, A. Rake, K. Melchior, W. Rohde, G. Dorner, Hypothalamic nuclei are malformed in weanling offspring of low protein malnourished rat dams. J. Nutr. 130(10), 2582–2590 (2000)

    CAS  PubMed  Google Scholar 

  12. P.L. Terroni, R.W. Anthony, M.A. Hanson, F.R.A. Cagampang, Expression of agouti-related peptide, neuropeptide Y, pro-opiomelanocortin and the leptin receptor isoforms in fetal mouse brain from pregnant dams on a protein-restricted diet. Mol. Brain Res. 140, 111–115 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. R. Kozak, S. Richy, B. Beck, Persistent alterations in neuropeptide Y release in the paraventricular nucleus of rats subjected to dietary manipulation during early life. Eur. J. Neurosci. 21, 2887–2892 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. B.A. Ikenasio-Thorpe, B.H. Breier, M.H. Vickers, M. Fraser, Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J. Endocrinol. 193(1), 31–37 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. N.M. Thompson, A.M. Norman, S.S. Donkin, R.R. Shankar, M.H. Vickers, J.L. Miles, B.H. Breier, Prenatal and postnatal pathways to obesity: different underlying mechanisms, different metabolic outcomes. Endocrinology 148(5), 2345–2354 (2007). doi:10.1210/en.2006-1641

    Article  CAS  PubMed  Google Scholar 

  16. M.H. Vickers, P.D. Gluckman, A.H. Convey, P.L. Hofman, W.S. Cutfield, A. Gertler, B.H. Breier, M. Harris, Neonatal leptin treatment reverses developmental programming. Endocrinology 146(10), 4211–4216 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. G. Paxinos, C. Watson, The rat brain in stereotaxic coordinates, 2nd edn. (Academic Press, San Diego, 1986)

    Google Scholar 

  18. M. Palkovits, Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res. 59, 449–450 (1973)

    Article  CAS  PubMed  Google Scholar 

  19. K.D. Niswender, C.D. Morrison, D.J. Clegg, R. Olson, D.G. Baskin, M.G. Myers Jr, R.J. Seeley, M.W. Schwartz, Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52(2), 227–231 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. M.J. Yang, F. Wang, J.H. Wang, W.N. Wu, Z.L. Hu, J. Cheng, D.F. Yu, L.H. Long, H. Fu, N. Xie, J.G. Chen, PI3K integrates the effects of insulin and leptin on large-conductance Ca2+-activated K+ channels in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Am. J. Physiol. Endocrinol. Metab. 298(2), E193–E201 (2010). doi:10.1152/ajpendo.00155.2009

    Article  CAS  PubMed  Google Scholar 

  21. A. Abizaid, Q. Gao, T.L. Horvath, Thoughts for food: brains mechanisms and peripheral energy balance. Neuron 51, 691–702 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Q. Wang, C. Bing, K. Al-Barazanji, D.E. Mossakowaska, X.M. Wang, D.L. McBay, W.A. Neville, M. Taddayon, L. Pickavance, S. Dryden, M.E. Thomas, M.T. McHale, I.S. Gloyer, S. Wilson, R. Buckingham, J.R. Arch, P. Trayhurn, G. Williams, Interactions between leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat. Diabetes 46(3), 335–341 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. M.L. Hakansson, A.L. Hulting, B. Meister, Expression of leptin receptor mRNA in the hypothalamic arcuate nucleus–relationship with NPY neurones. NeuroReport 7(18), 3087–3092 (1996)

    Article  CAS  PubMed  Google Scholar 

  24. A.F. Baquero, A.J. de Solis, S.R. Lindsley, M.A. Kirigiti, M.S. Smith, M.A. Cowley, L.M. Zeltser, K.L. Grove, Developmental switch of leptin signaling in arcuate nucleus neurons. J. Neurosci. 34(30), 9982–9994 (2014). doi:10.1523/JNEUROSCI.0933-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  25. B. Beck, Neuropeptides and obesity. Ingestive Behav Obes 16, 916–923 (2000)

    CAS  Google Scholar 

  26. P.J. Enriori, A.E. Evans, P. Sinnayah, E.E. Jobst, L. Tonelli-Lemos, S.K. Billes, M.M. Glavas, B.E. Grayson, M. Perello, E.A. Nillni, K.L. Grove, M.A. Cowley, Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocorin neurons. Cell Metab. 5, 181–194 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. K. Nagamori, M. Ishibashi, T. Shiraishi, Y. Oomura, K. Sasaki, Effects of leptin on hypothalamic arcuate neurons in Wistar and Zucker rats: an in vitro study. Exp. Biol. Med. 228, 1162–1167 (2003)

    CAS  Google Scholar 

  28. N.M. Rizk, L.S. Liu, J. Eckel, Hypothalamic expression of neuropeptide-Y in the New Zealand obese mouse. Int. J. Obes. 22, 1172–1177 (1998)

    Article  CAS  Google Scholar 

  29. B.E. Levin, A.A. Dunn-Meynell, Reduced central leptin sensitivity in rats with diet-induced obesity. Am. J. Physiol. 283, 941–948 (2002)

    Article  Google Scholar 

  30. X.F. Huang, M. Han, L.H. Storlien, The level of NPY receptor mRNA expression in diet-induced obese and resistant mice. Mol. Brain Res. 115, 21–28 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. S. Lin, L.H. Storlien, X.F. Huang, Leptin receptor, NPY, POMC mRNA expression in the diet-induced obese mouse brain. Brain Res. 875, 89–95 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. C. Peiser, G.P. McGregor, R.E. Lang, Leptin receptor expression and suppressor of cytokine signalling transcript levels in high-fat-fed rats. Life Sci. 67, 2971–2981 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. M.M. Ollmann, B.D. Wilson, Y.K. Yang, J.A. Kerns, Y. Chen, I. Gantz, G.S. Barsh, Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278(5335), 135–138 (1997)

    Article  CAS  PubMed  Google Scholar 

  34. M. Rossi, M.S. Kim, D.G. Morgan, C.J. Small, C.M. Edwards, D. Sunter, S. Abusnana, A.P. Goldstone, S.H. Russell, S.A. Stanley, D.M. Smith, K. Yagaloff, M.A. Ghatei, S.R. Bloom, A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 139(10), 4428–4431 (1998). doi:10.1210/endo.139.10.6332

    Article  CAS  PubMed  Google Scholar 

  35. J.A. Harrold, G. Williams, Melanocortin-4 receptors, beta-MSH and leptin: key elements in the satiety pathway. Peptides 27(2), 365–371 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. C. Girardet, A.A. Butler, Neural melanocortin receptors in obesity and related metabolic disorders. Biochim. Biophys. Acta 1842(3), 482–494 (2014). doi:10.1016/j.bbadis.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  37. J.A. Harrold, G. Williams, P.S. Widdowson, Changes in hypothalamic agouti-related protein (agrp), but not alpha-MSH or pro-opiomelanocortin concentrations in dietary-obese and food-restricted rats. Biochem. Biophys. Res. Commun. 258, 574–577 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. J. Korner, E. Savontaus, S.C. Chua, R.L. Leibel, S.L. Wardlaw, Leptin regulation of agrp and Npy mRNA in the rat hypothalamus. J. Neuroendocrinol. 13, 959–966 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. R.S. Ahima, S.M. Hileman, Postnatal regulation of hypothalamic neuropeptide expression by leptin: implications for energy balance and body weight regulation. Regul. Pept. 92, 1–7 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. B.M. Spiegelman, J.S. Flier, Obesity and the regulation of energy balance. Cell 104, 531–543 (2001)

    Article  CAS  PubMed  Google Scholar 

  41. R. Pal, A. Sahu, Leptin signaling in the hypothalamus during chronic central leptin infusion. Endocrinology 144(9), 3789–3798 (2003). doi:10.1210/en.2002-0148

    Article  CAS  PubMed  Google Scholar 

  42. H. Münzberg, J.S. Flier, C. Bjørbæk, Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145(11), 4880–4889 (2004)

    Article  PubMed  Google Scholar 

  43. N. Takahashi, H.R. Patel, Y. Qi, J. Dushay, R.S. Ahima, Divergent effects of leptin in mice susceptible or resistant to obesity. Horm. Metab. Res. 34(11–12), 691–697 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the Health Research Council of New Zealand (HRC) and Gravida: National Centre for Growth and Development, a Centre of Research Excellence administered by the New Zealand Tertiary Education Commission.

Author contributions

BHB and MF wrote the grant applications for funding support for the studies. BHB, SK and MV conceptualised and designed all in vivo experimental procedures and research strategies. MF conceptualised the design and implementation of all molecular studies. MF and CKW performed all molecular expression analyses. MF and CKW analysed all molecular data. MF, BHB, SK and MV provided critical interpretation of the results. MF drafted the manuscript. MF, BHB, SF and MV edited and revised the manuscript. All authors have read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mhoyra Fraser.

Ethics declarations

Confilct of interest

The authors have no conflicts of interest to disclose. The study sponsors had no role in (1) study design; (2) the collection, analysis, and interpretation of data; (3) the writing of the report; and (4) the decision to submit the manuscript for publication. No honorarium, grant, or other form of payment was given to anyone to produce the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraser, M., Dhaliwal, C.K., Vickers, M.H. et al. Diet-induced obesity and prenatal undernutrition lead to differential neuroendocrine gene expression in the hypothalamic arcuate nuclei. Endocrine 53, 839–847 (2016). https://doi.org/10.1007/s12020-016-0918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0918-5

Keywords

Navigation