Skip to main content

Advertisement

Log in

Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

This study aimed to detect serum microRNAs (miRNAs) differentially expressed between polycystic ovary syndrome (PCOS) patients with impaired glucose metabolism (IGM), PCOS patients with normal glucose tolerance (NGT), and healthy controls. A TaqMan miRNA array explored serum miRNA profiles as a pilot study, then selected miRNAs were analyzed in a validation cohort consisting of 65 PCOS women with IGM, 65 PCOS women with NGT, and 45 healthy women The relative expression of miR-122, miR-193b, and miR-194 was up-regulated in PCOS patients compared with controls, whereas that of miR-199b-5p was down-regulated. Furthermore, miR-122, miR-193b, and miR-194 were increased in the PCOS-IGM group compared with the PCOS-NGT group. Multiple linear regression analyses revealed that miR-193b and body mass index contributed independently to explain 43.7 % (P < 0.0001) of homeostasis model assessment-insulin resistance after adjustment for age. Investigation of diagnostic values confirmed the optimal combination of BMI and miR-193b to explore the possibility of IGM in PCOS women with area under the curve of 0.752 (95 % CI 0.667–0.837, P < 0.001). Bioinformatics analysis indicated that the predicted target functions of these miRNAs mainly involved glycometabolism and ovarian follicle development pathways, including the insulin signaling pathway, the neurotrophin signaling pathway, the PI3K-AKT signaling pathway, and regulation of actin cytoskeleton. This study expands our knowledge of the serum miRNA expression profiles of PCOS patients with IGM and the predicted target signal pathways involved in disease pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PCOS:

Polycystic ovarian syndrome

IGM:

Impaired glucose metabolism

IGT:

Impaired glucose tolerance

T2DM:

Type 2 diabetes mellitus

NGT:

Normal glucose tolerance

HOMA-IR:

Homeostasis model assessment-insulin resistance

FAI:

Free androgen index

References

  1. C.M. DeUgarte, A.A. Bartolucci, R. Azziz, Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil. Steril. 83(5), 1454–1460 (2005). doi:10.1016/j.fertnstert.2004.11.070

    Article  CAS  PubMed  Google Scholar 

  2. X. Chen, D. Yang, L. Li, S. Feng, L. Wang, Abnormal glucose tolerance in Chinese women with polycystic ovary syndrome. Hum. Reprod. 21(8), 2027–2032 (2006). doi:10.1093/humrep/del142

    Article  CAS  PubMed  Google Scholar 

  3. R.M. Ni, Y. Mo, X. Chen, J. Zhong, W. Liu, D. Yang, Low prevalence of the metabolic syndrome but high occurrence of various metabolic disorders in Chinese women with polycystic ovary syndrome. Eur. J. Endocrinol. 161(3), 411–418 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. J. Huang, R. Ni, X. Chen, L. Huang, Y. Mo, D. Yang, Metabolic abnormalities in adolescents with polycystic ovary syndrome in south China. Reprod. Biol. Endocrinol. 8, 142 (2010). doi:10.1186/1477-7827-8-142

    Article  PubMed  PubMed Central  Google Scholar 

  5. R.J. Norman, L. Masters, C.R. Milner, J.X. Wang, M.J. Davies, Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Hum. Reprod. 16(9), 1995–1998 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. H.J. Teede, S.K. Hutchison, S. Zoungas, The management of insulin resistance in polycystic ovary syndrome. Trends Endocrinol. Metab. 18(7), 273–279 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. D. Di Sarra, F. Tosi, C. Bonin, T. Fiers, J.M. Kaufman, C. Signori, F. Zambotti, M. Dall’Alda, B. Caruso, M.E. Zanolin, E. Bonora, P. Moghetti, Metabolic inflexibility is a feature of women with polycystic ovary syndrome and is associated with both insulin resistance and hyperandrogenism. J. Clin. Endocrinol. Metab. 98(6), 2581–2588 (2013)

    Article  PubMed  Google Scholar 

  8. S. Ying, D.C. Chang, J.D. Miller, S. Lin The microRNA: overview of the RNA gene that modulates gene functions MicroRNA Protocols1-18 (Springer, Berlin, 2006)

    Google Scholar 

  9. A. Tanzer, P.F. Stadler, Evolution of microRNAs MicroRNA Protocols335-350 (Springer, New York, 2006)

    Google Scholar 

  10. M.A. Cortez, C. Bueso-Ramos, J. Ferdin, G. Lopez-Berestein, A.K. Sood, G.A. Calin, MicroRNAs in body fluids—the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8(8), 467–477 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Selbach, B. Schwanhäusser, N. Thierfelder, Z. Fang, R. Khanin, N. Rajewsky, Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209), 58–63 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. D.S. Karolina, S. Tavintharan, A. Armugam, S. Sepramaniam, S.L. Pek, M.T. Wong, S.C. Lim, C.F. Sum, K. Jeyaseelan, Circulating miRNA profiles in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 97(12), E2271–E2276 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. M.A.S. Dehwah, A. Xu, Q. Huang, MicroRNAs and type 2 diabetes/obesity. J. Genet. Genomics. 39(1), 11–18 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. A. Dai, H. Sun, T. Fang, Q. Zhang, S. Wu, Y. Jiang, L. Ding, G. Yan, Y. Hu, MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett. 587(15), 2474–2482 (2013). doi:10.1016/j.febslet.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  15. A.V. Sirotkin, D. Ovcharenko, R. Grossmann, M. Laukova, M. Mlyncek, Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J. Cell. Physiol. 219(2), 415–420 (2009). doi:10.1002/jcp.21689

    Article  CAS  PubMed  Google Scholar 

  16. L. Jiang, J. Huang, L. Li, Y. Chen, X. Chen, X. Zhao, D. Yang, MicroRNA-93 promotes ovarian granulosa cells proliferation through targeting CDKN1A in polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 100(5), E729–E738 (2015). doi:10.1210/jc.2014-3827

    Article  PubMed  PubMed Central  Google Scholar 

  17. R.S. Redis, S. Calin, Y. Yang, M.J. You, G.A. Calin, Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol. Ther. 136(2), 169–174 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. N. Kosaka, H. Iguchi, T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101(10), 2087–2092 (2010). doi:10.1111/j.1349-7006.2010.01650.x

    Article  CAS  PubMed  Google Scholar 

  19. W. Long, C. Zhao, C. Ji, H. Ding, Y. Cui, X. Guo, R. Shen, J. Liu, Characterization of serum microRNAs profile of PCOS and identification of novel non-invasive biomarkers. Cell. Physiol. Biochem. 33(5), 1304–1315 (2014). doi:10.1159/000358698

    Article  CAS  PubMed  Google Scholar 

  20. C.F. Ding, W.Q. Chen, Y.T. Zhu, Y.L. Bo, H.M. Hu, R.H. Zheng, Circulating microRNAs in patients with polycystic ovary syndrome. Hum. Fertil. (Camb) 18(1), 22–29 (2015). doi:10.3109/14647273.2014.956811

    Article  CAS  Google Scholar 

  21. K. Wang, S. Zhang, B. Marzolf, P. Troisch, A. Brightman, Z. Hu, L.E. Hood, D.J. Galas, Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 106(11), 4402–4407 (2009). doi:10.1073/pnas.0813371106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Xiang, Y. Zeng, R. Yang, H. Xu, Z. Chen, J. Zhong, H. Xie, Y. Xu, X. Zeng, U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 454(1), 210–214 (2014). doi:10.1016/j.bbrc.2014.10.064

    Article  CAS  PubMed  Google Scholar 

  23. H.M. Heneghan, N. Miller, A.J. Lowery, K.J. Sweeney, J. Newell, M.J. Kerin, Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann. Surg. 251(3), 499–505 (2010). doi:10.1097/SLA.0b013e3181cc939f

    Article  PubMed  Google Scholar 

  24. Z. Huang, D. Huang, S. Ni, Z. Peng, W. Sheng, X. Du, Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int. J. Cancer 127(1), 118–126 (2010). doi:10.1002/ijc.25007

    Article  CAS  PubMed  Google Scholar 

  25. J. Wang, J. Chen, P. Chang, A. LeBlanc, D. Li, J.L. Abbruzzesse, M.L. Frazier, A.M. Killary, S. Sen, MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer Prev. Res. (Phila) 2(9), 807–813 (2009). doi:10.1158/1940-6207.CAPR-09-0094

    Article  CAS  Google Scholar 

  26. C.H. Lawrie, S. Gal, H.M. Dunlop, B. Pushkaran, A.P. Liggins, K. Pulford, A.H. Banham, F. Pezzella, J. Boultwood, J.S. Wainscoat, C.S. Hatton, A.L. Harris, Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br. J. Haematol. 141(5), 672–675 (2008). doi:10.1111/j.1365-2141.2008.07077.x

    Article  PubMed  Google Scholar 

  27. T.S. Wong, X.B. Liu, B.Y. Wong, R.W. Ng, A.P. Yuen, W.I. Wei, Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin. Cancer Res. 14(9), 2588–2592 (2008). doi:10.1158/1078-0432.CCR-07-0666

    Article  CAS  PubMed  Google Scholar 

  28. I.S. Vlachos, N. Kostoulas, T. Vergoulis, G. Georgakilas, M. Reczko, M. Maragkakis, M.D. Paraskevopoulou, K. Prionidis, T. Dalamagas, A.G. Hatzigeorgiou, DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40(Web Server issue), W498–W504 (2012). doi:10.1093/nar/gks494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R. Wang, J. Hong, Y. Cao, J. Shi, W. Gu, G. Ning, Y. Zhang, W. Wang, Elevated circulating microRNA-122 is associated with obesity and insulin resistance in young adults. Eur. J. Endocrinol. 172(3), 291–300 (2015). doi:10.1530/EJE-14-0867

    Article  CAS  PubMed  Google Scholar 

  30. E. Arner, N. Mejhert, A. Kulyte, P.J. Balwierz, M. Pachkov, M. Cormont, S. Lorente-Cebrian, A. Ehrlund, J. Laurencikiene, P. Heden, K. Dahlman-Wright, J.F. Tanti, Y. Hayashizaki, M. Ryden, I. Dahlman, E. van Nimwegen, C.O. Daub, P. Arner, Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61(8), 1986–1993 (2012). doi:10.2337/db11-1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Y. Yu, J. Chai, H. Zhang, W. Chu, L. Liu, L. Ma, H. Duan, B. Li, D. Li, miR-194 Promotes burn-induced hyperglycemia via attenuating IGF-IR expression. Shock 42(6), 578–584 (2014). doi:10.1097/SHK.0000000000000258

    Article  CAS  PubMed  Google Scholar 

  32. H.W. Ahn, R.D. Morin, H. Zhao, R.A. Harris, C. Coarfa, Z.J. Chen, A. Milosavljevic, M.A. Marra, A. Rajkovic, MicroRNA transcriptome in the newborn mouse ovaries determined by massive parallel sequencing. Mol. Hum. Reprod. 16(7), 463–471 (2010). doi:10.1093/molehr/gaq017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F.I. Milagro, J. Miranda, M.P. Portillo, A. Fernandez-Quintela, J. Campion, J.A. Martinez, High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PLoS One 8(1), e54319 (2013). doi:10.1371/journal.pone.0054319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. S.S. Lim, R.J. Norman, M.J. Davies, L.J. Moran, The effect of obesity on polycystic ovary syndrome: a systematic review and meta-analysis. Obes. Rev. 14(2), 95–109 (2013). doi:10.1111/j.1467-789X.2012.01053.x

    Article  CAS  PubMed  Google Scholar 

  35. S. Koren, L.M. DiPilato, M.J. Emmett, A.L. Shearin, Q. Chu, B. Monks, M.J. Birnbaum, The role of mouse Akt2 in insulin-dependent suppression of adipocyte lipolysis in vivo. Diabetologia 58(5), 1063–1070 (2015). doi:10.1007/s00125-015-3532-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J.J. Brozinick, B.R. Roberts, G.L. Dohm, Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes 52(4), 935–941 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. N. Xu, D.H. Geller, M.R. Jones, V.A. Funari, R. Azziz, M.O. Goodarzi, Comprehensive assessment of expression of insulin signaling pathway components in subcutaneous adipose tissue of women with and without polycystic ovary syndrome. J. Clin. Transl. Endocrinol. 2(3), 99–104 (2015). doi:10.1016/j.jcte.2015.06.002

    Article  PubMed  Google Scholar 

  38. Y. Cheng, Y. Feng, L. Jansson, Y. Sato, M. Deguchi, K. Kawamura, A.J. Hsueh, Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J. (2015). doi:10.1096/fj.14-267856

    PubMed Central  Google Scholar 

  39. K. Kawamura, Y. Cheng, N. Suzuki, M. Deguchi, Y. Sato, S. Takae, C.H. Ho, N. Kawamura, M. Tamura, S. Hashimoto, Y. Sugishita, Y. Morimoto, Y. Hosoi, N. Yoshioka, B. Ishizuka, A.J. Hsueh, Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc. Natl. Acad. Sci. USA 110(43), 17474–17479 (2013). doi:10.1073/pnas.1312830110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M.W. O’Reilly, A.E. Taylor, N.J. Crabtree, B.A. Hughes, F. Capper, R.K. Crowley, P.M. Stewart, J.W. Tomlinson, W. Arlt, Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione. J. Clin. Endocrinol. Metab. 99(3), 1027–1036 (2014)

    PubMed  PubMed Central  Google Scholar 

  41. M. Brower, K. Brennan, M. Pall, R. Azziz, The severity of menstrual dysfunction as a predictor of insulin resistance in PCOS. J. Clin. Endocrinol. Metab. 98(12), E1967–E1971 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D.P. Bartel, MicroRNAs: target recognition and regulatory functions. Cell 136(2), 215–233 (2009). doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Q. Sang, Z. Yao, H. Wang, R. Feng, H. Wang, X. Zhao, Q. Xing, L. Jin, L. He, L. Wu, Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J. Clin. Endocrinol. Metab. 98(7), 3068–3079 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. M. Murri, M.ì.A. Insenser, E. Fern ì ndez-Dur ì n, L. Jos ì, , Escobar-Morreale, H.ì.C.F. Effects of polycystic ovary syndrome (PCOS), sex hormones, and obesity on circulating miRNA-21, miRNA-27b, miRNA-103 and miRNA-155 expression. J. Clin. Endocr. Metab. 2013–2218 (2013)

  45. J. Hu, Y. Xu, J. Hao, S. Wang, C. Li, S. Meng, MiR-122 in hepatic function and liver diseases. Protein Cell 3(5), 364–371 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S.N. Fleischhacker, S. Bauersachs, A. Wehner, K. Hartmann, K. Weber, Differential expression of circulating microRNAs in diabetic and healthy lean cats. Vet. J. 197(3), 688–693 (2013). doi:10.1016/j.tvjl.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  47. M.X. Liu, M.K. Siu, S.S. Liu, J.W. Yam, H.Y. Ngan, D.W. Chan, Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer. Oncotarget 5(4), 944–958 (2014)

    Article  PubMed  Google Scholar 

  48. F.J. Ortega, J.M. Mercader, J.M. Moreno-Navarrete, O. Rovira, E. Guerra, E. Esteve, G. Xifra, C. Martinez, W. Ricart, J. Rieusset, S. Rome, M. Karczewska-Kupczewska, M. Straczkowski, J.M. Fernandez-Real, Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37(5), 1375–1383 (2014). doi:10.2337/dc13-1847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Key Laboratory of Malignant Tumor Molecular Mechanism and Translational Medicine of Guangzhou Bureau of Science and Information Technology (Grant No. [2013]163). Grant support was also provided by the National Natural Science Foundation of China (Grant No. 81370680 and 81402168); the Specialized Research Fund for the Doctoral Program of the Chinese Ministry of Education (Grant No. 20130171130009); the Natural Science Foundation of Key Research Project of Guangdong Province (Grant No: 2013020012660); and the Fund of Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030310069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongzi Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights

All procedures involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Linlin Jiang and Jia Huang have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12020_2016_878_MOESM1_ESM.tif

miRNA expression in the PCOS-IGM subgroups. Box plots show miRNA expression levels in sera from PCOS-IFG/IGT patients (n = 48) and PCOS-T2DM patients (n = 17). The concentrations of miR-122 (a), miR-193b (b), miR-194 (c), and miR-199b-5p (d) did not differ significantly between the two groups (TIFF 877 kb)

Supplementary material 2 (DOCX 20 kb)

Supplementary material 3 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Huang, J., Chen, Y. et al. Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine 53, 280–290 (2016). https://doi.org/10.1007/s12020-016-0878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0878-9

Keywords

Navigation