Skip to main content

Advertisement

Log in

Gene interference strategies as a new tool for the treatment of prostate cancer

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is one of the most common cancer in men. It affects older men and the incidence increases with age; the median age at diagnosis is 67 years. The diagnosis of PCa is essentially based on three tools: digital rectal exam, serum concentration of prostate specific antigen, and transrectal ultrasound-guided biopsy. Currently, the therapeutic treatments of this cancer are different and range from the prostatectomy to hormonal therapy, to radiation therapy, to immunotherapy, and to chemotherapy. However, additional efforts are required in order to find new weapons for the treatment of metastatic setting of disease. The purpose of this review is to highlight new therapeutic strategies based on gene interference; in fact, numerous siRNA and miRNA in the therapeutic treatment of PCa are reported below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Siegel, C. De Santis, K. Virgo, K. Stein, A. Mariotto, T. Smith et al., Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 62(4), 220–241 (2012)

    PubMed  Google Scholar 

  2. P. Boyle, J. Ferlay, Cancer incidence and mortality in Europe, 2004. Ann. Oncol. 16(3), 481–488 (2005)

    CAS  PubMed  Google Scholar 

  3. N. Howlader, A.M. Noone, M. Krapcho, N. Neyman, R. Aminou, W. Waldron et al (eds), SEER Cancer Statistics Review, 1975–2008, National Cancer Institute, Bethesda, MD (2011), http://seer.cancer.gov/csr/1975_2008/

  4. M.M. Center, A. Jemal, J. Lortet-Tieulent, E. Ward, J. Ferlay, O. Brawley et al., International variation in prostate cancer incidence and mortality rates. Eur. Urol. 61, 1079–1092 (2012)

    PubMed  Google Scholar 

  5. R.J. Barnard, Prostate cancer prevention by nutritional means to alleviate metabolic syndrome. Am. J. Clin. Nutr. 86, s889–s893 (2007)

    PubMed  Google Scholar 

  6. H. Moller, N. Roswall, M. Van Hemelrijck, S.B. Larsen, J. Cuzick, L. Holmberg et al., Prostate cancer incidence, clinical stage and survival in relation to obesity: a prospective cohort study in Denmark. Int. J. Cancer 136(8), 1940–1947 (2015)

    CAS  PubMed  Google Scholar 

  7. UK CR Prostate Cancer Mortality Statistics Cancer Research UK, http://www.cancerresearchuk.org/cancer-info/cancerstats/types/prostate/incidence/uk-prostate-cancer-incidence-statistics#geog. Accessed 14 Sept 2013

  8. J. Ferlay, H.R. Shin, F. Bray, D. Forman, C. Mathers, D.M. Parkin, Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12), 2893–2917 (2010)

    CAS  PubMed  Google Scholar 

  9. H. Gronberg, Prostate cancer epidemiology. Lancet 361(9360), 859–864 (2003)

    PubMed  Google Scholar 

  10. F.T. Odedina, J.O. Ogunbiyi, F.A. Ukoli, Roots of prostate cancer in African-American men. J. Natl. Med. Assoc. 98(4), 539–543 (2006)

    PubMed Central  PubMed  Google Scholar 

  11. A. Jemal, R. Siegal, J. Xu, E. Ward, Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010)

    PubMed  Google Scholar 

  12. A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    PubMed  Google Scholar 

  13. P. Lichtenstein, N.V. Holm, P.K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo et al., Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000)

    CAS  PubMed  Google Scholar 

  14. R.T. Greenlee, T. Murray, S. Bolden, P.A. Wingo, Cancer statistics 2000. CA Cancer J. Clin. 50, 7–33 (2000)

    CAS  PubMed  Google Scholar 

  15. L.A. Hindorff, E.M. Gillanders, T.A. Manolio, Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 32(7), 945–954 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  16. F. Wiklund, Prostate cancer genomics: can we distinguish between indolent and fatal disease using genetic markers? Genome Med. 2(7), 45 (2010)

    PubMed Central  PubMed  Google Scholar 

  17. J.S. Varghese, D.F. Easton, Genome-wide association studies in common cancers—what have we learnt? Curr. Opin. Genet. Dev. 20(3), 201–209 (2010)

    CAS  PubMed  Google Scholar 

  18. J. Xu, S.L. Zheng, B. Chang, J.R. Smith, J.D. Carpten, O.C. Stine et al., Linkage of prostate cancer susceptibility loci to chromosome 1. Hum. Genet. 108, 335–345 (2001)

    CAS  PubMed  Google Scholar 

  19. R. Berry, D.J. Schaid, J.R. Smith, A.J. French, J.J. Schroeder, S.K. McDonnell et al., Linkage analysis at the chromosome 1 loci 1q24-25(HPC1), 1q42.2-43 (PCAP), and 1p36 (CAPB) in families with hereditary prostate cancer. Am. J. Hum. Genet. 66, 539–546 (2000)

    CAS  PubMed Central  PubMed  Google Scholar 

  20. S.A. Gayther, K.A. de Foy, P. Harrington, P. Pharoah, W.D. Dunsmuir, S.M. Edwards et al., The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group UK Familial Prostate cancer Study Collaborators. Cancer Res. 60, 4513–4518 (2000)

    CAS  PubMed  Google Scholar 

  21. V. Nwosu, J. Carpten, J.M. Trent, R. Sheridan, Heterogeneity of genetic alterations in prostate cancer evidence of the complex nature of the disease. Hum. Mol. Genet. 10, 2313–2318 (2001)

    CAS  PubMed  Google Scholar 

  22. S.L. Berger, T. Kouzarides, R. Shiekhattar, A. Shilatifard, An operational definition of epigenetics. Genes Dev. 23(7), 781–783 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  23. A.T. Hark, C.J. Schoenherr, D.J. Katz, R.S. Ingram, J.M. Levorse, S.M. Tilghman, CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785), 486–489 (2000)

    CAS  PubMed  Google Scholar 

  24. J. Mellor, The dynamics of chromatin remodeling at promoters. Mol. Cell 19(2), 147–157 (2005)

    CAS  PubMed  Google Scholar 

  25. M.F. Fraga, E. Ballestar, A. Villar-Garea, M. Boix-Chornet, J. Espada, G. Schotta et al., Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37(4), 391–400 (2005)

    CAS  PubMed  Google Scholar 

  26. S. Sharma, T.K. Kelly, P.A. Jones, Epigenetics in cancer. Carcinogenesis 31(1), 27–36 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  27. T. Sun, Q. Wang, S. Balk, M. Brown, G.S. Lee, P. Kantoff, The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res. 69(8), 3356–3363 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  28. T. Sun, M. Yang, S. Chen, S. Balk, M. Pomerantz, C.L. Hsieh et al., The altered expression of MiR-221/-222 and MiR-23b/-27b is associated with the development of human castration resistant prostate cancer. Prostate 72(10), 1093–1103 (2012)

    CAS  PubMed  Google Scholar 

  29. Z. Hagman, O. Larne, A. Edsjö, A. Bjartell, R.A. Ehrnström, D. Ulmert et al., miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int. J. Cancer 127(12), 768–2776 (2010)

    Google Scholar 

  30. F.H. Schroder, J. Hugosson, M.J. Roobol, T.L. Tammela, S. Ciatto, V. Nelen et al., Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360(13), 1320–1328 (2009)

    PubMed  Google Scholar 

  31. G.L. Andriole, E.D. Crawford, R.L. Grubb 3rd, S.S. Buys, D. Chia, T.R. Church et al., Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  32. R.M. Hoffman, Clinical practice. Screening for prostate cancer. N. Engl. J. Med. 365(21), 2013–2019 (2011)

    CAS  PubMed  Google Scholar 

  33. S. Loeb, M.A. Bjurlin, J. Nicholson, T.L. Tammela, D.F. Penson, H.B. Carter et al., Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 65(6), 1046–1055 (2014)

    PubMed Central  PubMed  Google Scholar 

  34. L. Klotz, Emberton, Management of low risk prostate cancer-active surveillance and focal therapy. Nat. Rev. Clin. Oncol. 11(6), 324–334 (2014)

    PubMed  Google Scholar 

  35. A. Heidenreich, P.J. Bastian, J. Bellmunt, M. Bolla, S. Joniau, T. van der Kwast et al., EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur. Assoc. Urol. 65(2), 467–479 (2014)

    CAS  Google Scholar 

  36. A. Heidenreich, J. Bellmunt, M. Bolla, S. Joniau, M. Mason, V. Matveev et al., EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Assoc. Urol. 59(1), 61–71 (2011)

    Google Scholar 

  37. A.B. Jani, P.J. Rossi, Role of radiation and androgen deprivation therapy for advanced prostate cancer. Curr. Probl. Cancer 39(1), 41–47 (2015)

    PubMed  Google Scholar 

  38. R.R. Aggarwal, T.M. Beer, V.K. Weinberg, C. Higano, M.E. Taplin, C.J. Ryan et al., Intermittent chemotherapy as a platform for testing novel agents in patients with metastatic castration-resistant prostate cancer: a department of defense prostate cancer clinical trials consortium randomized phase II trial of intermittent docetaxel with prednisone with or without maintenance GM-CSF. Clin. Genitourin. Cancer 9, S1558–S7673 (2014)

    Google Scholar 

  39. M. Porsch, M. Ulrich, J.J. Wendler, U.B. Liehr, F. Reiher, A. Janitzky et al., A randomised phase II trial comparing docetaxel plus prednisone with docetaxel plus prednisone plus low-dose cyclophosphamide in castration-resistant prostate cancer. Chemotherapy 60(2), 129–134 (2015)

    Google Scholar 

  40. M. Yamaoka, T. Hara, M. Kusaka, Overcoming persistent dependency on androgen signaling after progression to castration-resistant prostate cancer. Clin. Cancer Res. 16, 4319–4324 (2010)

    CAS  PubMed  Google Scholar 

  41. J.S. de Bono, C.J. Logothetis, A. Molina, K. Fizazi, S. North, L. Chu et al., Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011)

    PubMed Central  PubMed  Google Scholar 

  42. C.K. Tsao, M.D. Galsky, A.C. Small, T. Yee, W.K. Oh et al., Targeting the androgen receptor signalling axis in castration-resistant prostate cancer (CRPC). BJU Int. 110, 1580–1588 (2012)

    PubMed  Google Scholar 

  43. C. Tran, S. Ouk, N.J. Clegg, Y. Chen, P.A. Watson, V. Arora et al., Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  44. E.S. Antonarakis, C. Lu, H. Wang, B. Luber, M. Nakazawa, J.C. Roeser et al., AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. New Engl. J. Med. 371, 1028–1038 (2014)

    PubMed Central  PubMed  Google Scholar 

  45. T.M. Beer, A.J. Armstrong, Y. Rathkopf, Y. Loriot, C.N. Sternberg, C.S. Higano et al., Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014)

    PubMed Central  PubMed  Google Scholar 

  46. Y. Loriot, K. Fizazi, J.S. De Bono, D. Forer, M. Hirmand, H.I. Scher, Outcomes in patients with liver or lung metastatic castration-resistant prostate cancer (mCRPC) treated with the androgen receptor inhibitor enzalutamide: results from the phase III AFFIRM trial. J. Clin. Oncol. 31(suppl; abstr 5065) (2013)

  47. M.T. Fleming, H.I. Scher, K. Fizazi, M.E. Taplin, D. Forer, M. Hirmand et al., Long-term responders to enzalutamide (ENZA) during the phase III AFFIRM trial: baseline characteristics and efficacy outcomes. J. Clin. Oncol. 31(Suppl. 6; abstr 20) (2013)

  48. A. Mita, L. Denis, E. Rowinsky, J. Debono, A. Goetz, L. Ochoa et al., Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin. Cancer Res. 15, 723 (2009)

    CAS  PubMed  Google Scholar 

  49. J. de Bono, S. Oudard, M. Ozguroglu, S. Hansen, J. Machiels, I. Kocak et al., Prednisone plus cabazitaxel or mitoxantrone for metastatic castration resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147 (2010)

    PubMed  Google Scholar 

  50. D. Lin, X. Dong, K. Wang, A.W. Wyatt, F. Crea, H. Xue, Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer. Oncotarget 6(3), 1806–1820 (2015)

    PubMed Central  PubMed  Google Scholar 

  51. P.O. Gannon, A.O. Poisson, N. Delvoye, R. Lapointe, A.M. Mes-Masson, F. Saad, Characterization of the intra-prostatic immune cell infiltration in androgen-deprived prostate cancer patients. J. Immunol. Methods 348(1–2), 9–17 (2009)

    CAS  PubMed  Google Scholar 

  52. P.W. Kantoff, C.S. Higano, N.D. Shore, E.R. Berger, E.J. Small, D.F. Penson et al., Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363(5), 411–422 (2010)

    CAS  PubMed  Google Scholar 

  53. D.I. Quinn, N.D. Shore, S. Egawa, W.R. Gerritsen, K. Fizazi, Immunotherapy for castration-resistant prostate cancer: progress and new paradigms. Urol. Oncol. S1078–1439(14), 00352–00354 (2015)

    Google Scholar 

  54. P.W. Kantoff, T.J. Schuetz, B.A. Blumenstein, L.M. Glode, D.L. Bilhartz, M. Wyand et al., Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28(7), 1099–1105 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  55. J.L. Gulley, C.G. Drake, Immunotherapy for prostate cancer: recent advances, lessons learned, and areas for further research. Clin. Cancer Res. 17, 3884–3891 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  56. A.J. van den Eertwegh, J. Versluis, H.P. van den Berg, S.J. Santegoets, R.J. van Moorselaar, T.M. van der Sluis et al., Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 13(5), 509–517 (2012)

    PubMed  Google Scholar 

  57. L. Fong, E.J. Small, Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J. Clin. Oncol. 26, 5275–5283 (2008)

    CAS  PubMed  Google Scholar 

  58. E.J. Small, N.S. Tchekmedyian, B.I. Rini, L. Fong, I. Lowy, J.P. Allison, A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 13(6), 1810–1815 (2007)

    CAS  PubMed  Google Scholar 

  59. E.D. Kwon, C.G. Drake, H.I. Scher, K. Fizazi, A. Bossi, A.J. van den Eertwegh et al., Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 15(7), 700–712 (2014)

    CAS  PubMed Central  PubMed  Google Scholar 

  60. R.A. Madan, M. Mohebtash, P.M. Arlen, M. Vergati, M. Rauckhorst, S.M. Steinberg et al., Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 13, 501–508 (2012)

    CAS  PubMed  Google Scholar 

  61. R. Pili, M. Häggman, W.M. Stadler, J.R. Gingrich, V.J. Assikis, A. Björk et al., Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J. Clin. Oncol. 29(30), 4022–4028 (2011)

    CAS  PubMed  Google Scholar 

  62. C. Nabhan, D.P. Petrylak, The role of IMiDs alone or in combination inprostate cancer. Clin. Genitourin. Cancer 10, 141–146 (2012)

    PubMed  Google Scholar 

  63. C. Nabhan, A. Patel, D. Villines, K. Tolzien, S.K. Kelby, T.M. Lestingi, Lenalidomide monotherapy in chemotherapy-naive, castration-resistant prostate cancer patients: final results of a phase II study. Clin. Genitourin. Cancer 12(1), 27–32 (2014)

    PubMed  Google Scholar 

  64. J.A. Garcia, P. Elson, A. Tyler, P. Triozzi, R. Dreicer, Sargramostim (GM-CSF) and lenalidomide in castration-resistant prostate cancer (CRPC): results from a phase I–II clinical trial. Urol Oncol 32(1), 33.e11–33.e17 (2014)

    CAS  Google Scholar 

  65. A.P. Wolffe, M.A. Matzke, Epigenetics: regulation through repression. Science 286(5439), 481–486 (1999)

    CAS  PubMed  Google Scholar 

  66. P. Mitchell, D. Tollervey, mRNA stability in eukaryotes. Curr. Opin. Genet. Dev. 10(2), 193–198 (2000)

    CAS  PubMed  Google Scholar 

  67. I.J. Macrae, K. Zhou, F. Li, A. Repic, A.N. Brooks, W.Z. Cande et al., Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006)

    CAS  PubMed  Google Scholar 

  68. N. Doi, S. Zenno, R. Ueda, H. Ohki-Hamazaki, K. Ui-Tei, K. Saigo, Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr. Biol. 12, 41–46 (2003)

    Google Scholar 

  69. N. Agrawal, P.V. Dasaradhi, A. Mohmmed, P. Malhotra, R.K. Bhatnagar, S.K. Mukherjee, RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67, 657–685 (2003)

    CAS  PubMed Central  PubMed  Google Scholar 

  70. G. Meister, Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013)

    CAS  PubMed  Google Scholar 

  71. S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    CAS  PubMed  Google Scholar 

  72. M. John, R. Constien, A. Akinc, M. Goldberg, Y.A. Moon, M. Spranger et al., Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 449, 745–747 (2007)

    CAS  PubMed Central  PubMed  Google Scholar 

  73. R.K. Leung, P.A. Whittaker, RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol. Ther. 107, 222–239 (2005)

    CAS  PubMed  Google Scholar 

  74. S.I. Pai, Y.Y. Lin, B. Macaes, A. Meneshian, C.F. Hung, T.C. Wu, Prospects of RNA interference therapy for cancer. Gene Ther. 13, 464–477 (2006)

    CAS  PubMed  Google Scholar 

  75. B.P. Bartel, MicroRNAs: genomic, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    CAS  PubMed  Google Scholar 

  76. G.A. Calin, M. Ferracin, A. Cimmino, G. Di Leva, M. Shimizu, S.E. Wojcik et al., A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353(17), 1793–1801 (2005)

    CAS  PubMed  Google Scholar 

  77. A. Esquela-Kerscher, F.J. Slack, Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006)

    CAS  PubMed  Google Scholar 

  78. P. Tagliaferri, M. Rossi, M.T. Di Martino, N. Amodio, E. Leone, A. Gulla et al., Promises and challenges of microRNA-based treatment of multiple myeloma. Curr. Cancer Drug Targets 12, 838–846 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  79. N. Amodio, M.T. Di Martino, A. Neri, P. Tagliaferri, P. Tassone, Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin. Biol. Ther. 13(1), S125–S137 (2013)

    CAS  PubMed  Google Scholar 

  80. M. Rossi, N. Amodio, M.T. Di Martino, D. Caracciolo, P. Tagliaferri, P. Tassone, From target therapy to miRNA therapeutics of human multiple myeloma: theoretical and technological issues in the evolving scenario. Curr. Drug Targets 14, 1144–1149 (2013)

    CAS  PubMed  Google Scholar 

  81. M. Rossi, N. Amodio, M.T. Di Martino, P. Tagliaferri, P. Tassone, W.C. Cho, MicroRNA and multiple myeloma: from laboratory findings to translational therapeutic approaches. Curr. Pharm. Biotechnol. 15, 459–467 (2014)

    CAS  PubMed  Google Scholar 

  82. L. Tutar, E. Tutar, Y. Tutar, MicroRNAs and cancer; an overview. Curr. Pharm. Biotechnol. 15, 430–437 (2014)

    CAS  PubMed  Google Scholar 

  83. C. Rolfo, D. Fanale, D.S. Hong, A.M. Tsimberidou, S.A. Piha-Paul, P. Pauwels et al., Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr. Pharm. Biotechnol. 15, 475–485 (2014)

    CAS  PubMed  Google Scholar 

  84. S.B. Thorsen, S. Obad, N.F. Jensen, J. Stenvang, S. Kauppinen, The therapeutic potential of microRNAs in cancer. Cancer J. 18, 275–284 (2012)

    CAS  PubMed  Google Scholar 

  85. A.G. Bader, miR-34—a microRNA replacement therapy is headed to the clinic. Front. Genet. 3, 120 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  86. L.C. Bovell, B.D. Putcha, T. Samuel, U. Manne, Clinical implications of microRNAs in cancer. Biotech. Histochem. 88, 388–396 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  87. J. Guo, L. Bourre, D.M. Soden, G.C. O’Sullivan, C. O’Driscoll, Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol. Adv. 29, 402–417 (2011)

    CAS  PubMed  Google Scholar 

  88. F. Tilesi, P. Fradiani, V. Socci, D. Willems, F. Ascenzioni, Design and validation of siRNAs and shRNAs. Curr. Opin. Mol. Ther. 11(2), 156–164 (2009)

    CAS  PubMed  Google Scholar 

  89. R. Garzon, G. Marcucci, C.M. Croce, Targeting microRNAs in cancer: rational, strategies and challenges. Nat. Rev. Drug Discov. 9, 775–789 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  90. J. Guo, K.A. Fisher, R. Darcy, J.F. Cryan, C. O’Driscoll, Therapeutic targeting in the silent era: advances in non-viral siRNA delivery. Mol. BioSyst. 6, 1143–1161 (2010)

    CAS  PubMed  Google Scholar 

  91. G. De Rosa, D. De Stefano, A. Galeone, Oligonucleotide delivery in cancer therapy. Expert Opin. Drug Deliv. 7, 1263–1278 (2010)

    PubMed  Google Scholar 

  92. C.V. Pecot, G.A. Calin, R.L. Coleman, G. Lopez-Berestein, A.K. Sood, RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11, 59–67 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  93. S. Mishra, P. Webster, M.E. Davis, PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83, 97–111 (2004)

    CAS  PubMed  Google Scholar 

  94. E. Kim, Y. Jung, H. Choi, J. Yang, J.S. Suh, Y.M. Huh et al., Prostate cancer cell death produced by the co-delivery of Bcl-xLshRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31, 4592–4599 (2010)

    CAS  PubMed  Google Scholar 

  95. S.C. Semple, S.K. Klimuk, T.O. Harasym, N. Dos Santos, S.M. Ansell, K.F. Wong et al., Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionisable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510, 152–166 (2001)

    CAS  PubMed  Google Scholar 

  96. T.S. Zimmermann, A.C. Lee, A. Akinc, B. Bramlage, D. Bumcrot, M.N. Fedoruk et al., RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006)

    CAS  PubMed  Google Scholar 

  97. M. Mimeault, S.K. Batra, Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochim. Biophys. Acta 1816, 25–37 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  98. A. Bee, D. Brewer, C. Beesley, A. Dodson, S. Forootan, T. Dickinson et al., siRNA knockdown of ribosomal protein gene RPL19 abrogates the aggressive phenotype of human prostate cancer. PLoS One 6, e22672 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  99. V. Lakshmikanthan, L. Zou, J.I. Kim, A. Michal, Z. Nie, N.C. Messias et al., Identification of betaArrestin2 as a corepressor of androgen receptor signaling in prostate cancer. Proc. Natl. Acad. Sci. USA 106, 9379–9384 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  100. I.U. Agoulnik, A. Vaid, M. Nakka, M. Alvarado, W.E. Bingman 3rd, H. Erdem et al., Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res. 66, 10594–10602 (2006)

    CAS  PubMed  Google Scholar 

  101. S.A. Tomlins, D.R. Rhodes, S. Perner, S.M. Dhanasekaran, R. Mehra, X.W. Sun et al., Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005)

    CAS  PubMed  Google Scholar 

  102. R.K. Singh, B.L. Lokeshwar, The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signalling to promote prostate cancer growth. Cancer Res. 71, 3268–3277 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Y. Kitagawa, J. Dai, J. Zhang, J.M. Keller, J. Nor, Z. Yao, E.T. Keller, Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res. 65, 10921–10929 (2005)

    CAS  PubMed  Google Scholar 

  104. S.H. Kim, J.H. Jeong, S.H. Lee, S.W. Kim, T.G. Park, Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release 129, 107–116 (2008)

    CAS  PubMed  Google Scholar 

  105. P. Cornford, J. Evans, A. Dodson, K. Parsons, A. Woolfenden, J. Neoptolemos et al., Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer. Am. J. Pathol. 154, 137–144 (1999)

    CAS  PubMed Central  PubMed  Google Scholar 

  106. S. Yao, A. Bee, D. Brewer, A. Dodson, C. Beesley, Y. Ke et al., PRKC-z expression promotes the aggressive phenotype of human prostate cancer cells and is a novel target for therapeutic intervention. Genes Cancer 1, 444–464 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  107. C. Jing, C. Beesley, C.S. Foster, P.S. Rudland, H. Fujii, T. Ono et al., Identification of the messenger RNA for human cutaneous fatty acid-binding protein as a metastasis inducer. Cancer Res. 60, 2390–2398 (2000)

    CAS  PubMed  Google Scholar 

  108. E.A. Morgan, S.S. Forootan, J. Adamson, C.S. Foster, H. Fujii, M. Igarashi et al., Expression of cutaneous fatty acid binding protein (C-FABP) in prostate cancer: potential prognostic marker and target for tumourigenicity-suppression. Int. J. Oncol. 32, 767–775 (2008)

    CAS  PubMed  Google Scholar 

  109. C. Ruiz, D.R. Holz, M. Oeggerli, S. Schneider, I.M. Gonzales, J.M. Kiefer et al., Amplification and overexpression of vinculin are associated with increased tumour cell proliferation and progression in advanced prostate cancer. J. Pathol. 223, 543–552 (2011)

    CAS  PubMed  Google Scholar 

  110. H.V. Heemers, K.M. Regan, S.M. Dehm, D.J. Tindall, Androgen induction of the androgen receptor coactivator four and a half LIM domain protein-2: evidence for a role for serum response factor in prostate cancer. Cancer Res. 67, 10592–10599 (2007)

    CAS  PubMed  Google Scholar 

  111. G. Narla, A. DiFeo, Y. Fernandez, S. Dhanasekaran, F. Huang, J. Sangodkar et al., KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J. Clin. Invest. 118, 2711–2721 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  112. G.M. Tozer, C. Kanthou, B.C. Baguley, Disrupting tumour blood vessels. Nat. Rev. Cancer 5, 423–435 (2005)

    CAS  PubMed  Google Scholar 

  113. N. Numajiri, K. Takasawa, T. Nishiya, H. Tanaka, K. Ohno, W. Hayakawa et al., On-off system for PI3-kinase-Akt signaling through S-nitrosylation of phosphatase with sequence homology to tensin (PTEN). Proc. Natl. Acad. Sci. USA 108, 10349–10354 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  114. N.R. Leslie, M. Foti, Non-genomic loss of PTEN function in cancer: not in my genes. Trends Pharmacol. Sci. 32, 131–140 (2011)

    CAS  PubMed  Google Scholar 

  115. Y. Qiu, W.H. Li, H.Q. Zhang, Y. Liu, X.X. Tian, W.G. Fang, P2X7 mediates ATP-driven invasiveness in prostate cancer cells. PLoS One 9(12), e114371 (2014)

    PubMed Central  PubMed  Google Scholar 

  116. S.Y. Sung, I.H. Wu, P.H. Chuang, J.A. Petros, H.C. Wu, H.J. Zeng et al., Targeting L1 cell adhesion molecule expression using liposome-encapsulated siRNA suppresses prostate cancer bone metastasis and growth. Oncotarget 5(20), 9911–9929 (2014)

    PubMed Central  PubMed  Google Scholar 

  117. L. Wang, M. Zhang, K. Tan, Y. Guo, H. Tong, X. Fan et al., Preparation of nanobubbles carrying androgen receptor siRNA and their inhibitory effects on androgen-independent prostate cancer when combined with ultrasonic irradiation. PLoS One 9(5), e96586 (2014)

    PubMed Central  PubMed  Google Scholar 

  118. S. Runlin, X. Haibing, Y. Tao, C. Lei, T. Yuanfeng, W. Bolin, X. Hua, Effects of miR-200c on the migration and invasion abilities of human prostate cancer Du145 cells and the corresponding mechanism. Front. Med. 8(4), 456–463 (2014)

    Google Scholar 

  119. M. Fuse, N. Nohata, S. Kojima, S. Sakamoto, T. Chiyomaru, K. Kawakami et al., Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int. J. Oncol. 38(4), 1093–1101 (2011)

    CAS  PubMed  Google Scholar 

  120. B. Xu, X. Niu, X. Zhang, J. Tao, D. Wu, Z. Wang et al., miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol. Cell. Biochem. 350(1–2), 207–213 (2011)

    CAS  PubMed  Google Scholar 

  121. B. Xu, N. Wang, X. Wang, N. Tong, N. Shao, J. Tao et al., miR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. Prostate 72(11), 1171–1178 (2012)

    CAS  PubMed  Google Scholar 

  122. J. Tao, D.Y. Wu, B. Xu, W.C. Qian, P.C. Li, Q. Lu et al., microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol. Rep. 27(6), 1967–1975 (2012)

    CAS  PubMed  Google Scholar 

  123. N. Nadiminty, R. Tummala, W. Lou, Y. Zhu, X.B. Shi, J.X. Zou et al., MicroRNA let-7 cis downregulated in prostate cancer and suppresses prostate cancer growth. PLoS One 7(3), e32832 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  124. M. Jin, T. Zhang, C. Liu, miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Can. Res. 74(15), 4183–4195 (2014)

    CAS  Google Scholar 

  125. Y. Qu, X. Huang, Z. Li, J. Liu, J. Wu, D. Chen et al., miR-199a-3p inhibits aurora kinase A and attenuates prostate cancer growth: new avenue for prostate cancer treatment. Am. J. Pathol. 184(5), 1541–1549 (2014)

    CAS  PubMed  Google Scholar 

  126. F. Takeshita, L. Patrawala, M. Osaki, R.U. Takahashi, Y. Yamamoto, N. Kosaka et al., Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol. Ther. 18(1), 181–187 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Y. Wei, J. Yang, L. Yi, Y. Wang, Z. Dong, Z. Liu et al., MiR-223-3p targeting SEPT6 promotes the biological behavior of prostate cancer. Sci. Rep. 4, 7546 (2014)

    CAS  PubMed Central  PubMed  Google Scholar 

  128. G. Han, M. Fan, X. Zhang, microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem. Biophys. Res. Commun. 456(3), 804–809 (2015)

    CAS  PubMed  Google Scholar 

  129. S. Rajendiran, A.V. Parwani, R.J. Hare, S. Dasgupta, R.K. Roby, J.K. Vishwanatha, MicroRNA-940 suppresses prostate cancer migration and invasion by regulating MIEN1. Mol. Cancer 13, 250 (2014)

    PubMed Central  PubMed  Google Scholar 

  130. H. Zhang, S. Qi, T. Zhang, A. Wang, R. Liu, J. Guo et al., miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget 6(8), 6092–6104 (2015)

    PubMed Central  PubMed  Google Scholar 

  131. G.M. Zhang, C.Y. Bao, F.N. Wan, D.L. Cao, X.J. Qin, H.L. Zhang et al., MicroRNA-302a suppresses tumor cell proliferation by inhibiting AKT in prostate cancer. PLoS One 10(4), e0124410 (2015)

    PubMed Central  PubMed  Google Scholar 

  132. H. Xuan, W. Xue, J. Pan, J. Sha, B. Dong, Y. Huang, Downregulation of miR-221, -30d, and -15a. Contributes to pathogenesis of prostate cancer by targeting Bmi-1. Biochem. Mosc. 80(3), 276–283 (2015)

    CAS  Google Scholar 

  133. X. Fu, Z. Meng, W. Liang, Y. Tian, X. Wang, W. Han et al., miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene 33(34), 4296–4306 (2014)

    CAS  PubMed  Google Scholar 

  134. K.H. Lee, F.C. Lin, T.I. Hsu, J.T. Lin, J.H. Guo, C.H. Tsai et al., MicroRNA-296-5p (miR-296-5p) functions as a tumor suppressor in prostate cancer by directly targeting Pin1. Biochim. Biophys. Acta 1843(9), 2055–2066 (2014)

    CAS  PubMed  Google Scholar 

  135. T.I. Hsu, C.H. Hsu, K.H. Lee, J.T. Lin, C.S. Chen, K.C. Chang et al., MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis 21(3), e99 (2014)

    Google Scholar 

  136. J.J. Yu, Y.X. Wu, F.J. Zhao, S.J. Xia, miR-96 promotes cell proliferation and clonogenicity by down-regulating of FOXO1 in prostate cancer cells. Med. Oncol. 3(4), 910 (2014)

    Google Scholar 

  137. S. Ren, Y. Liu, W. Xu, Y. Sun, J. Lu, F. Wang et al., Long noncoding RNAMALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J. Urol. 190(6), 2278–2287 (2013)

    CAS  PubMed  Google Scholar 

  138. M. Zhu, Q. Chen, X. Liu, Q. Sun, X. Zhao, R. Deng et al., lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 281(16), 3766–3775 (2014)

    CAS  PubMed  Google Scholar 

  139. S.J. Tong, J. Liu, X. Wang, L.X. Qu, microRNA-181 promotes prostate cancer cell proliferation by regulating DAX-1 expression. Exp. Ther. Med. 8(4), 1296–1300 (2014)

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Q. Chen, X. Zhao, H. Zhang, H. Yuan, M. Zhu, Q. Sun et al., MiR-130b suppresses prostate cancer metastasis through down-regulation of MMP2. Mol. Carcinog. (2014). doi:10.1002/mc.22204

    PubMed Central  Google Scholar 

  141. C. Liu, K. Kelnar, B. Liu, X. Chen, T. Calhoun-Davis, H. Li et al., The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med. 17(2), 211–216 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  142. K. Kojima, Y. Fujita, Y. Nozawa, T. Deguchi, M. Ito, MiR-34a attenuates paclitaxel-resistance of hormone-refractory prostate cancer PC3 cells through direct and indirect mechanisms. Prostate 70(14), 1501–1512 (2010)

    CAS  PubMed  Google Scholar 

  143. M. Kashat, L. Azzouz, S.H. Sarkar, D. Kong, Y. Li, F.H. Sarkar, Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am. J. Transl. Res. 4, 432–442 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  144. T. Chiyomaru, S. Yamamura, S. Fukuhara, H. Yoshino, T. Kinoshita, S. Majid et al., Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 8, e70372 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  145. G. Misso, M.T. Di Martino, G. De Rosa, A.A. Farooqi, A. Lombardi, V. Campani et al., Mir-34: a new weapon against cancer? Mol. Ther. Nucleic Acids 23(3), e194 (2014)

    Google Scholar 

  146. P. Ostling, S.K. Leivonen, A. Aakula, P. Kohonen, R. Makela, Z. Hagman et al., Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Cancer Res. 71, 1956–1967 (2011)

    PubMed  Google Scholar 

  147. F. Qu, X. Cui, Y. Hong, J. Wang, Y. Li, L. Chen et al., MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol. Cell. Biochem. 377, 121–130 (2013)

    CAS  PubMed  Google Scholar 

  148. Z. Hagman, B.S. Haflidadottir, J.A. Ceder, O. Larne, A. Bjartell, H. Lilja, miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients. Br. J. Cancer 108, 1668–1676 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  149. K. Sikand, J.E. Slaibi, R. Singh, S.D. Slane, G.C. Shukla, A miR 488* inhibits androgen receptor expression in prostate carcinoma cells. Int. J. Can. 129, 810–819 (2011)

    CAS  Google Scholar 

  150. N. Nadiminty, R. Tummala, W. Lou, Y. Zhu, J. Zhang, X. Chen et al., MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J. Biol. Chem. 287, 1527–1537 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  151. N. Craft, Y. Shostak, M. Carey, C.L. Sawyers, A mechanism for hormone independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. 5, 280–285 (1999)

    CAS  PubMed  Google Scholar 

  152. I.K. Mellinghoff, I. Vivanco, A. Kwon, C. Tran, J. Wongvipat, C.L. Sawyers, HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 6, 517–527 (2004)

    CAS  PubMed  Google Scholar 

  153. B. Yan, Q. Guo, X.X. Nan, Z. Wang, Z. Yin, L. Yi et al., Micro-ribonucleic acid 29b inhibits cell proliferation and invasion and enhances cell apoptosis and chemotherapy effects of cisplatin via targeting of DNMT3b and AKT3 in prostate cancer. Onco Targets Ther. 8, 557–565 (2015)

    PubMed Central  PubMed  Google Scholar 

  154. M. Ding, B. Lin, T. Li, Y. Liu, Y. Li, X. Zhou et al., A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget 6(10), 7686–7700 (2015)

    PubMed Central  PubMed  Google Scholar 

  155. M.R. Epis, K.M. Giles, A. Barker, T.S. Kendrick, P.J. Leedman, miR-331-3p regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J. Biol. Chem. 284, 24696–24704 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  156. C.J. Kao, A. Martiniez, X.B. Shi, J. Yang, C.P. Evans, A. Dobi et al., miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene 33(19), 2495–2503 (2014)

    CAS  PubMed Central  PubMed  Google Scholar 

  157. N. Mercatelli, V. Coppola, D. Bonci, F. Miele, A. Costantini, M. Guadagnoli et al., The inhibition of the highly expressed mir-221 and mir-222 impairs the growth of prostate carcinoma xenografts in mice. PLoS One 3(12), e4029 (2008)

    PubMed Central  PubMed  Google Scholar 

  158. T. Tao, G. Li, Q. Dong, D. Liu, C. Liu, D. Han et al., Loss of SNAIL inhibits cellular growth and metabolism through the miR-128-mediated RPS6KB1/HIF-1α/PKM2 signaling pathway in prostate cancer cells. Tumour Biol. 35(9), 8543–8550 (2014)

    CAS  PubMed  Google Scholar 

  159. M. Pennati, A. Lopergolo, V. Profumo, M. De Cesare, S. Sbarra, R. Valdagni et al., miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochem. Pharmacol. 87(4), 579–597 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by Regione Campania with a project entitled “Laboratori Pubblici Progetto Hauteville.” and by Italian Ministry of Education and Instruction (FIRB Accordi di Programma Quadro-Piattaforme Nanotecnologiche).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Caraglia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boccellino, M., Alaia, C., Misso, G. et al. Gene interference strategies as a new tool for the treatment of prostate cancer. Endocrine 49, 588–605 (2015). https://doi.org/10.1007/s12020-015-0629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0629-3

Keywords

Navigation