Skip to main content
Log in

Association of polymorphisms in the leptin and leptin receptor genes with inflammatory mediators in patients with osteoporosis

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Bone mass and inflammation are implicated in the pathogenesis of osteoporosis. We hypothesized that leptin and leptin receptor gene might be associated with osteoporosis by activating the inflammatory pathway. Therefore, we analyzed polymorphisms of the leptin (gene symbol, LEP) and leptin receptor (gene symbol, LEPR) genes and determined their associations with proinflammatory cytokine levels in patients with osteoporosis. We assessed polymorphisms in LEP (−2548G > A) and LEPR (Lys109Arg, Gln223Arg, and Lys656Asn) and calculated odds ratios for the genotype and allele distributions between patients and controls. Serum leptin, soluble leptin receptor, interleukin (IL)-1, IL-6, IL-7, and tumor necrosis factor (TNF) levels were measured by enzyme-linked immunosorbent assays (ELISA) and were verified by in vitro lymphocyte proliferation assays and ELISAs. We found a higher frequency of the A allele for LEP at −2548 in patients with osteoporosis compared with the control group. The A allele was associated with differences in serum leptin, soluble leptin receptor, IL-1, IL-6, and TNF levels compared with the wild-type G allele (p < 0.05). The G allele in Lys109Arg and Gln223Arg was associated with increased risk of osteoporosis and with differences in serum leptin, soluble leptin receptor, IL-1, IL-6, and TNF levels compared with the wild-type A allele (p < 0.05). The Lys656Asn genotype was not associated with the risk of osteoporosis. In vitro lymphocyte proliferation assays and ELISAs confirmed these results. Polymorphisms in LEP and LEPR are associated with increased risk of osteoporosis, possibly by increasing the expression of proinflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Y. Dionyssiotis, Bone loss and fractures in multiple sclerosis: focus on epidemiologic and physiopathological features. Int. J. Gen. Med. 2011(4), 505–509 (2011)

    Article  Google Scholar 

  2. M.E. Nadia, A.S. Nazrun, M. Norazlina, N.M. Isa, M. Norliza, S. Ima Nirwana, The anti-inflammatory, phytoestrogenic, and antioxidative role of Labisia pumila in prevention of postmenopausal osteoporosis. Adv. Pharmacol. Sci. 2012, 706905 (2012)

    PubMed  CAS  Google Scholar 

  3. A.H. Myers, E.G. Robinson, M.L. Van Natta, J.D. Michelson, K. Collins, S.P. Baker, Hip fractures among the elderly: factors associated with in-hospital mortality. Am. J. Epidemiol. 134(10), 1128–1137 (1991)

    PubMed  CAS  Google Scholar 

  4. H. Zhang, X. Chai, S. Li et al., Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine (2012). [Epub ahead of print]

  5. S.H. Ralston, B. de Crombrugghe, Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 20(18), 2492–2506 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. T. Harsløf, L.B. Husted, M. Carstens, L. Stenkjaer, B.L. Langdahl, Genotypes and haplotypes of the estrogen receptor genes, but not the retinoblastoma-interacting zinc finger protein 1 gene, are associated with osteoporosis. Calcif. Tissue Int. 87(1), 25–35 (2010)

    Article  PubMed  Google Scholar 

  7. J. Zupan, S. Mencej-Bedrac, S. Jurković-Mlakar, J. Prezelj, J. Marc, Gene–gene interactions in RANK/RANKL/OPG system influence bone mineral density in postmenopausal women. J. Steroid Biochem. Mol. Biol. 118(1–2), 102–106 (2010)

    Article  PubMed  CAS  Google Scholar 

  8. H. Jin, R.J. van’t Hof, O.M. Albagha, S.H. Ralston, Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum. Mol. Genet. 18(15), 2729–2738 (2009)

    Article  PubMed  CAS  Google Scholar 

  9. T.L. Yang, Y. Guo, Y.J. Liu et al., Genetic variants in the SOX6 gene are associated with bone mineral density in both Caucasian and Chinese populations. Osteoporos. Int. 23(2), 781–787 (2012)

    Article  PubMed  CAS  Google Scholar 

  10. N. Zamani, C.W. Brown, Emerging roles for the transforming growth factor-{beta} superfamily in regulating adiposity and energy expenditure. Endocr. Rev. 32(3), 387–403 (2011)

    Article  PubMed  CAS  Google Scholar 

  11. T. Simopoulou, K.N. Malizos, D. Iliopoulos et al., Differential expression of leptin and leptin’s receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Osteoarthritis Cartilage 15(8), 872–883 (2007)

    Article  PubMed  CAS  Google Scholar 

  12. Y. Fujita, K. Watanabe, K. Maki, Serum leptin levels negatively correlate with trabecular bone mineral density in high-fat diet-induced obesity mice. J. Musculoskelet. Neuronal Interact. 12(2), 84–94 (2012)

    PubMed  CAS  Google Scholar 

  13. T. Iida, T. Domoto, A. Takigawa et al., Relationships among blood leptin and adiponectin levels, fat mass, and bone mineral density in Japanese pre- and postmenopausal women. Hiroshima J. Med. Sci. 60(4), 71–78 (2011)

    PubMed  CAS  Google Scholar 

  14. E.L. Scheller, J. Song, M.I. Dishowitz, K.D. Hankenson, P.H. Krebsbach, A potential role for the myeloid lineage in leptin-regulated bone metabolism. Horm. Metab. Res. 44(1), 1–5 (2012)

    Article  PubMed  CAS  Google Scholar 

  15. G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41(1), 58–69 (2012)

    Article  PubMed  CAS  Google Scholar 

  16. R. Aller, D.A. De Luis, O. Izaola et al., Lys656Asn polymorphism of leptin receptor, leptin levels and insulin resistance in patients with non alcoholic fatty liver disease. Eur. Rev. Med. Pharmacol. Sci. 16(3), 335–341 (2012)

    PubMed  CAS  Google Scholar 

  17. T. Montalcini, S. Romeo, Y. Ferro, V. Migliaccio, C. Gazzaruso, A. Pujia, Osteoporosis in chronic inflammatory disease: the role of malnutrition. Endocrine 43(1), 59–64 (2013)

    Article  PubMed  CAS  Google Scholar 

  18. F. Procianoy, E. Procianoy, Orbital inflammatory disease secondary to a single-dose administration of zoledronic acid for treatment of postmenopausal osteoporosis. Osteoporos. Int. 21(6), 1057–1058 (2010)

    Article  PubMed  CAS  Google Scholar 

  19. G. Musso, Non-alcoholic fatty liver, adipose tissue, and the bone: a new triumvirate on the block. Endocrine 42(2), 237–239 (2012)

    Article  PubMed  CAS  Google Scholar 

  20. S.C. Manolagas, R.L. Jilka, Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332(5), 305–311 (1995)

    Article  PubMed  CAS  Google Scholar 

  21. S. Low, M.C. Chin, S. Ma, D. Heng, M. Deurenberg-Yap, Rationale for redefining obesity in Asians. Ann. Acad. Med. Singapore 38(1), 66–69 (2009)

    PubMed  Google Scholar 

  22. C. Gabay, M.G. Dreyer, N. Pellegrinelli, R. Chicheportiche, C.A. Meier, Leptin directly induces the secretion of interleukin 1 receptor antagonist in human monocytes. J. Clin. Endocrinol. Metab. 86(2), 783–791 (2001)

    Article  PubMed  CAS  Google Scholar 

  23. Y. Guo, H. Liu, T.L. Yang et al., The fat mass and obesity associated gene, FTO, is also associated with osteoporosis phenotypes. PLoS ONE 6(11), e27312 (2011)

    Article  PubMed  CAS  Google Scholar 

  24. J. Cieslak, M. Bartz, M. Stachowiak et al., Effect of three common SNPs in 5′-flanking region of LEP and ADIPOQ genes on their expression in Polish obese children and adolescents. Mol. Biol. Rep. 39(4), 3951–3955 (2012)

    Article  PubMed  CAS  Google Scholar 

  25. A. Gippini, A. Mato, R. Peino, M. Lage, C. Dieguez, F.F. Casanueva, Effect of resistance exercise (body building) training on serum leptin levels in young men. Implications for relationship between body mass index and serum leptin. J. Endocrinol. Invest. 22(11), 824–828 (1999)

    PubMed  CAS  Google Scholar 

  26. K. Snoussi, A.D. Strosberg, N. Bouaouina, S. Ben Ahmed, A.N. Helal, L. Chouchane, Leptin and leptin receptor polymorphisms are associated with increased risk and poor prognosis of breast carcinoma. BMC Cancer 6, 38 (2006)

    Article  PubMed  Google Scholar 

  27. R.R. McLean, Proinflammatory cytokines and osteoporosis. Curr. Osteoporos. Rep. 7(4), 134–139 (2009)

    Article  PubMed  Google Scholar 

  28. B. Canavan, R.O. Salem, S. Schurgin et al., Effects of physiological leptin administration on markers of inflammation, platelet activation, and platelet aggregation during caloric deprivation. J. Clin. Endocrinol. Metab. 90(10), 5779–5785 (2005)

    Article  PubMed  CAS  Google Scholar 

  29. C. Martin-Romero, J. Santos-Alvarez, R. Governa, V. Sanchez-Margalet, Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell. Immunol. 199(1), 15–24 (2000)

    Article  PubMed  CAS  Google Scholar 

  30. S. Agrawal, S. Gollapudi, H. Su, S. Gupta, Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J. Clin. Immunol. 31(3), 472–478 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Xiaomei Lin for statistical analysis and technical support.

Conflict of interest

The authors have no potential conflict of interest of relevance to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing L. Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X.L., Lu, C.F. Association of polymorphisms in the leptin and leptin receptor genes with inflammatory mediators in patients with osteoporosis. Endocrine 44, 481–488 (2013). https://doi.org/10.1007/s12020-013-9899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9899-9

Keywords

Navigation