Skip to main content

Advertisement

Log in

Implications of adiponectin in linking metabolism to testicular function

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Obesity is a major health problem, contributing to the development of various diseases with aging. In humans, obesity has been associated with reduced testosterone production and subfertility. Adipose tissue is an important source of hormones having influences on both metabolism and reproduction. Among them, the production and secretion of adiponectin is inversely correlated to the severity of obesity. The purpose of this review of literature is to present the current state of knowledge on adiponectin research to determine whether this hormone affects reproduction in men. Surprisingly, evidences show negative influences of adiponectin on GnRH secretion from the hypothalamus, LH and FSH secretion from the pituitary and testosterone at the testicular level. Thus far, the involvement of adiponectin in the influence of metabolism on reproduction in men is limited. However, adiponectin and its receptors are expressed by different cell types of the male gonad, including Leydig cells, spermatozoa, and epididymis. In addition, actions of adiponectin at the testicular level have been shown to promote spermatogenesis and sperm maturation. Therefore, autocrine/paracrine actions of adiponectin in the testis may contribute to support male reproductive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F.X. Pi-Sunyer, The obesity epidemic: pathophysiology and consequences of obesity. Obes. Res. 10(Suppl 2), 97S–104S (2002)

    PubMed  Google Scholar 

  2. K.M. Flegal, M.D. Carroll, B.K. Kit, C.L. Ogden, Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. J. Am. Med. Assoc. 307, 491–497 (2012)

    Google Scholar 

  3. C.A. Derby, S. Zilber, D. Brambilla, K.H. Morales, J.B. McKinlay, Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts Male Ageing Study. Clin. Endocrinol. (Oxf.) 65, 125–131 (2006)

    CAS  Google Scholar 

  4. R.S. Tan, S.J. Pu, Impact of obesity on hypogonadism in the andropause. Int. J. Androl. 25, 195–201 (2002)

    CAS  PubMed  Google Scholar 

  5. P.M. Mah, G.A. Wittert, Obesity and testicular function. Mol. Cell. Endocrinol. 316, 180–186 (2010)

    CAS  PubMed  Google Scholar 

  6. D. Landry, F. Cloutier, L.J. Martin, Implications of leptin in neuroendocrine regulation of male reproduction. Reprod. Biol. 13, 1–14 (2013)

    PubMed  Google Scholar 

  7. M. Pardo, A. Roca-Rivada, L.M. Seoane, F.F. Casanueva, Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41, 374–383 (2012)

    CAS  PubMed  Google Scholar 

  8. K. Marinou, D. Tousoulis, A.S. Antonopoulos, E. Stefanadi, C. Stefanadis, Obesity and cardiovascular disease: from pathophysiology to risk stratification. Int. J. Cardiol. 138, 3–8 (2010)

    PubMed  Google Scholar 

  9. K. Rabe, M. Lehrke, K.G. Parhofer, U.C. Broedl, Adipokines and insulin resistance. Mol. Med. Camb. Mass. 14, 741–751 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  10. P.G. Cohen, Aromatase, adiposity, aging and disease. The hypogonadal–metabolic–atherogenic-disease and aging connection. Med. Hypotheses 56, 702–708 (2001)

    CAS  PubMed  Google Scholar 

  11. A. Vermeulen, Decreased androgen levels and obesity in men. Ann. Med. 28, 13–15 (1996)

    CAS  PubMed  Google Scholar 

  12. A. Vermeulen, J.M. Kaufman, Ageing of the hypothalamo–pituitary–testicular axis in men. Horm. Res. 43, 25–28 (1995)

    CAS  PubMed  Google Scholar 

  13. G. Schneider, M.A. Kirschner, R. Berkowitz, N.H. Ertel, Increased estrogen production in obese men. J. Clin. Endocrinol. Metab. 48, 633–638 (1979)

    CAS  PubMed  Google Scholar 

  14. A.M. Corbould, S.J. Judd, R.J. Rodgers, Expression of types 1, 2, and 3 17 beta-hydroxysteroid dehydrogenase in subcutaneous abdominal and intra-abdominal adipose tissue of women. J. Clin. Endocrinol. Metab. 83, 187–194 (1998)

    CAS  PubMed  Google Scholar 

  15. P. Mårin, S. Arver, Androgens and abdominal obesity. Baillières Clin. Endocrinol. Metab. 12, 441–451 (1998)

    PubMed  Google Scholar 

  16. P. Mårin, Testosterone and regional fat distribution. Obes. Res. 3(Suppl 4), 609S–612S (1995)

    PubMed  Google Scholar 

  17. R. Lazarus, D. Sparrow, S. Weiss, Temporal relations between obesity and insulin: longitudinal data from the normative aging study. Am. J. Epidemiol. 147, 173–179 (1998)

    CAS  PubMed  Google Scholar 

  18. D. Goodman-Gruen, E. Barrett-Connor, Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 23, 912–918 (2000)

    CAS  PubMed  Google Scholar 

  19. E.C. Tsai, E.J. Boyko, D.L. Leonetti, W.Y. Fujimoto, Low serum testosterone level as a predictor of increased visceral fat in Japanese-American men. Int. J. Obes. Relat. Metab. Disord. 24, 485–491 (2000)

    CAS  PubMed  Google Scholar 

  20. V.A. Giagulli, J.M. Kaufman, A. Vermeulen, Pathogenesis of the decreased androgen levels in obese men. J. Clin. Endocrinol. Metab. 79, 997–1000 (1994)

    CAS  PubMed  Google Scholar 

  21. P.G. Cohen, The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone–estradiol shunt: a major factor in the genesis of morbid obesity. Med. Hypotheses 52, 49–51 (1999)

    CAS  PubMed  Google Scholar 

  22. H.K. Kley, H.G. Solbach, J.C. McKinnan, H.L. Krüskemper, Testosterone decrease and oestrogen increase in male patients with obesity. Acta Endocrinol. (Cph.) 91, 553–563 (1979)

    CAS  Google Scholar 

  23. B. Zumoff, G.W. Strain, L.K. Miller, W. Rosner, R. Senie, D.S. Seres, R.S. Rosenfeld, Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J. Clin. Endocrinol. Metab. 71, 929–931 (1990)

    CAS  PubMed  Google Scholar 

  24. T. Kadowaki, T. Yamauchi, Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439–451 (2005)

    CAS  PubMed  Google Scholar 

  25. J. Hoffstedt, E. Arvidsson, E. Sjölin, K. Wåhlén, P. Arner, Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. J. Clin. Endocrinol. Metab. 89, 1391–1396 (2004)

    CAS  PubMed  Google Scholar 

  26. K. Hotta, T. Funahashi, Y. Arita, M. Takahashi, M. Matsuda, Y. Okamoto, H. Iwahashi, H. Kuriyama, N. Ouchi, K. Maeda, M. Nishida, S. Kihara, N. Sakai, T. Nakajima, K. Hasegawa, M. Muraguchi, Y. Ohmoto, T. Nakamura, S. Yamashita, T. Hanafusa, Y. Matsuzawa, Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20, 1595–1599 (2000)

    CAS  PubMed  Google Scholar 

  27. I.J. Neeland, C.R. Ayers, A.K. Rohatgi, A.T. Turer, J.D. Berry, S.R. Das, G.L. Vega, A. Khera, D.K. McGuire, S.M. Grundy, J.A. de Lemos, Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obes. Silver Spring Md. 21, E439–E447 (2013)

    CAS  Google Scholar 

  28. Y. Arita, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, K. Hotta, I. Shimomura, T. Nakamura, K. Miyaoka, H. Kuriyama, M. Nishida, S. Yamashita, K. Okubo, K. Matsubara, M. Muraguchi, Y. Ohmoto, T. Funahashi, Y. Matsuzawa, Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999)

    CAS  PubMed  Google Scholar 

  29. M. Cnop, P.J. Havel, K.M. Utzschneider, D.B. Carr, M.K. Sinha, E.J. Boyko, B.M. Retzlaff, R.H. Knopp, J.D. Brunzell, S.E. Kahn, Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46, 459–469 (2003)

    CAS  PubMed  Google Scholar 

  30. F.B. Diamond Jr, D. Cuthbertson, S. Hanna, D. Eichler, Correlates of adiponectin and the leptin/adiponectin ratio in obese and non-obese children. J. Pediatr. Endocrinol. Metab. 17, 1069–1075 (2004)

    CAS  PubMed  Google Scholar 

  31. M. Bulló, J. Salas-Salvadó, P. García-Lorda, Adiponectin expression and adipose tissue lipolytic activity in lean and obese women. Obes. Surg. 15, 382–386 (2005)

    PubMed  Google Scholar 

  32. S.K. Jacobi, K.M. Ajuwon, T.E. Weber, J.L. Kuske, C.J. Dyer, M.E. Spurlock, Cloning and expression of porcine adiponectin, and its relationship to adiposity, lipogenesis and the acute phase response. J. Endocrinol. 182, 133–144 (2004)

    CAS  PubMed  Google Scholar 

  33. T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M.L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, T. Kadowaki, The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001)

    CAS  PubMed  Google Scholar 

  34. E. Hu, P. Liang, B.M. Spiegelman, AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996)

    CAS  PubMed  Google Scholar 

  35. Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K.: Adiponectin and adiponectin receptors in obesity-linked insulin resistance. Novartis Found. Symp. 286, 164–176 (2007); discussion 176–182, 200–203

    Google Scholar 

  36. C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, P.A. Tataranni, Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930–1935 (2001)

    CAS  PubMed  Google Scholar 

  37. B. Antuna-Puente, B. Feve, S. Fellahi, J.-P. Bastard, Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab. 34, 2–11 (2008)

    CAS  PubMed  Google Scholar 

  38. L. Sieminska, B. Marek, B. Kos-Kudla, D. Niedziolka, D. Kajdaniuk, M. Nowak, J. Glogowska-Szelag, Serum adiponectin in women with polycystic ovarian syndrome and its relation to clinical, metabolic and endocrine parameters. J. Endocrinol. Invest. 27, 528–534 (2004)

    CAS  PubMed  Google Scholar 

  39. Y. Okamoto, Adiponectin provides cardiovascular protection in metabolic syndrome. Cardiol. Res. Pract. 2011, 313179 (2011)

    PubMed Central  PubMed  Google Scholar 

  40. H.-S. Kim, J. Jo, J.E. Lim, Y.D. Yun, S.J. Baek, T.-Y. Lee, K.B. Huh, S.H. Jee, Adiponectin as predictor for diabetes among pre-diabetic groups. Endocrine 44, 411–418 (2013)

    CAS  PubMed  Google Scholar 

  41. J. Bai, Y. Liu, G.-F. Niu, L.-X. Bai, X.-Y. Xu, G.-Z. Zhang, L.-X. Wang, Relationship between adiponectin and testosterone in patients with type 2 diabetes. Biochem. Medica Časopis Hrvat. Društva Med. Biokem. HDMB 21, 65–70 (2011)

    CAS  Google Scholar 

  42. P.E. Scherer, S. Williams, M. Fogliano, G. Baldini, H.F. Lodish, A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995)

    CAS  PubMed  Google Scholar 

  43. L. Shapiro, P.E. Scherer, The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 8, 335–338 (1998)

    CAS  PubMed  Google Scholar 

  44. Y. Wang, K.S.L. Lam, M. Yau, A. Xu, Post-translational modifications of adiponectin: mechanisms and functional implications. Biochem. J. 409, 623–633 (2008)

    CAS  PubMed  Google Scholar 

  45. F. Simpson, J.P. Whitehead, Adiponectin: it’s all about the modifications. Int. J. Biochem. Cell Biol. 42, 785–788 (2010)

    CAS  PubMed  Google Scholar 

  46. Y. Wang, A. Xu, C. Knight, L.Y. Xu, G.J.S. Cooper, Hydroxylation and glycosylation of the four conserved lysine residues in the collagenous domain of adiponectin. Potential role in the modulation of its insulin-sensitizing activity. J. Biol. Chem. 277, 19521–19529 (2002)

    CAS  PubMed  Google Scholar 

  47. Y. Wang, K.S.L. Lam, L. Chan, K.W. Chan, J.B.B. Lam, M.C. Lam, R.C.L. Hoo, W.W.N. Mak, G.J.S. Cooper, A. Xu, Post-translational modifications of the four conserved lysine residues within the collagenous domain of adiponectin are required for the formation of its high molecular weight oligomeric complex. J. Biol. Chem. 281, 16391–16400 (2006)

    CAS  PubMed  Google Scholar 

  48. A.A. Richards, T. Stephens, H.K. Charlton, A. Jones, G.A. Macdonald, J.B. Prins, J.P. Whitehead, Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. Baltim. Md. 20, 1673–1687 (2006)

    CAS  Google Scholar 

  49. T.-S. Tsao, E. Tomas, H.E. Murrey, C. Hug, D.H. Lee, N.B. Ruderman, J.E. Heuser, H.F. Lodish, Role of disulfide bonds in Acrp30/adiponectin structure and signaling specificity. Different oligomers activate different signal transduction pathways. J. Biol. Chem. 278, 50810–50817 (2003)

    CAS  PubMed  Google Scholar 

  50. R. Basu, U.B. Pajvani, R.A. Rizza, P.E. Scherer, Selective downregulation of the high molecular weight form of adiponectin in hyperinsulinemia and in type 2 diabetes: differential regulation from nondiabetic subjects. Diabetes 56, 2174–2177 (2007)

    CAS  PubMed  Google Scholar 

  51. U.B. Pajvani, M. Hawkins, T.P. Combs, M.W. Rajala, T. Doebber, J.P. Berger, J.A. Wagner, M. Wu, A. Knopps, A.H. Xiang, K.M. Utzschneider, S.E. Kahn, J.M. Olefsky, T.A. Buchanan, P.E. Scherer, Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279, 12152–12162 (2004)

    CAS  PubMed  Google Scholar 

  52. H. Waki, T. Yamauchi, J. Kamon, Y. Ito, S. Uchida, S. Kita, K. Hara, Y. Hada, F. Vasseur, P. Froguel, S. Kimura, R. Nagai, T. Kadowaki, Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J. Biol. Chem. 278, 40352–40363 (2003)

    CAS  PubMed  Google Scholar 

  53. R.B. Ceddia, R. Somwar, A. Maida, X. Fang, G. Bikopoulos, G. Sweeney, Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132–139 (2005)

    CAS  PubMed  Google Scholar 

  54. X. Fang, R. Palanivel, X. Zhou, Y. Liu, A. Xu, Y. Wang, G. Sweeney, Hyperglycemia- and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. J. Mol. Endocrinol. 35, 465–476 (2005)

    CAS  PubMed  Google Scholar 

  55. E. Tomas, T.-S. Tsao, A.K. Saha, H.E. Murrey, Cc. Zhang, C. cheng, S.I. Itani, H.F. Lodish, N.B. Ruderman, Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl Acad. Sci. USA 99, 16309–16313 (2002)

    CAS  PubMed Central  PubMed  Google Scholar 

  56. J. Fruebis, T.S. Tsao, S. Javorschi, D. Ebbets-Reed, M.R. Erickson, F.T. Yen, B.E. Bihain, H.F. Lodish, Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001)

    CAS  PubMed Central  PubMed  Google Scholar 

  57. U.B. Pajvani, X. Du, T.P. Combs, A.H. Berg, M.W. Rajala, T. Schulthess, J. Engel, M. Brownlee, P.E. Scherer, Structure–function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. J. Biol. Chem. 278, 9073–9085 (2003)

    CAS  PubMed  Google Scholar 

  58. H. Waki, T. Yamauchi, J. Kamon, S. Kita, Y. Ito, Y. Hada, S. Uchida, A. Tsuchida, S. Takekawa, T. Kadowaki, Generation of globular fragment of adiponectin by leukocyte elastase secreted by monocytic cell line THP-1. Endocrinology 146, 790–796 (2005)

    CAS  PubMed  Google Scholar 

  59. C. Chabrolle, L. Tosca, J. Dupont, Regulation of adiponectin and its receptors in rat ovary by human chorionic gonadotrophin treatment and potential involvement of adiponectin in granulosa cell steroidogenesis. Reprod. Camb. Engl. 133, 719–731 (2007)

    CAS  Google Scholar 

  60. Z.V. Wang, P.E. Scherer, Adiponectin, cardiovascular function, and hypertension. Hypertension 51, 8–14 (2008)

    CAS  PubMed  Google Scholar 

  61. Luque-Ramírez, M., Martínez-García, M.Á., Montes-Nieto, R., Fernández-Durán, E., Insenser, M., Alpañés, M., Escobar-Morreale, H.F.: Sexual dimorphism in adipose tissue function as evidenced by circulating adipokine concentrations in the fasting state and after an oral glucose challenge. Hum. Reprod. Oxf. Engl. 28, 1908–1918 (2013)

    Google Scholar 

  62. T.P. Combs, A.H. Berg, M.W. Rajala, S. Klebanov, P. Iyengar, J.C. Jimenez-Chillaron, M.E. Patti, S.L. Klein, R.S. Weinstein, P.E. Scherer, Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes 52, 268–276 (2003)

    CAS  PubMed  Google Scholar 

  63. K. Robinson, J. Prins, B. Venkatesh, Clinical review: adiponectin biology and its role in inflammation and critical illness. Crit. Care Lond. Engl. 15, 221 (2011)

    Google Scholar 

  64. K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.-F. Palin, Adiponectin action from head to toe. Endocrine 37, 11–32 (2010)

    CAS  PubMed  Google Scholar 

  65. M. Calvani, A. Scarfone, L. Granato, E.V. Mora, G. Nanni, M. Castagneto, A.V. Greco, M. Manco, G. Mingrone, Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes 53, 939–947 (2004)

    CAS  PubMed  Google Scholar 

  66. L. Fajas, J.C. Fruchart, J. Auwerx, Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10, 165–173 (1998)

    CAS  PubMed  Google Scholar 

  67. T.F. Osborne, Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J. Biol. Chem. 275, 32379–32382 (2000)

    CAS  PubMed  Google Scholar 

  68. M.I. Yilmaz, A. Sonmez, K. Caglar, D.E. Gok, T. Eyileten, M. Yenicesu, C. Acikel, N. Bingol, S. Kilic, Y. Oguz, A. Vural, Peroxisome proliferator-activated receptor gamma (PPAR-gamma) agonist increases plasma adiponectin levels in type 2 diabetic patients with proteinuria. Endocrine 25, 207–214 (2004)

    CAS  PubMed  Google Scholar 

  69. A.C. Doran, N. Meller, A. Cutchins, H. Deliri, R.P. Slayton, S.N. Oldham, J.B. Kim, S.R. Keller, C.A. McNamara, The helix–loop–helix factors Id3 and E47 are novel regulators of adiponectin. Circ. Res. 103, 624–634 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  70. N. Maeda, M. Takahashi, T. Funahashi, S. Kihara, H. Nishizawa, K. Kishida, H. Nagaretani, M. Matsuda, R. Komuro, N. Ouchi, H. Kuriyama, K. Hotta, T. Nakamura, I. Shimomura, Y. Matsuzawa, PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50, 2094–2099 (2001)

    CAS  PubMed  Google Scholar 

  71. M. Iwaki, M. Matsuda, N. Maeda, T. Funahashi, Y. Matsuzawa, M. Makishima, I. Shimomura, Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52, 1655–1663 (2003)

    CAS  PubMed  Google Scholar 

  72. K. Thomas, D.-Y. Sung, X. Chen, W. Thompson, Y.E. Chen, J. McCarrey, W. Walker, M. Griswold, Developmental patterns of PPAR and RXR gene expression during spermatogenesis. Front. Biosci. Elite Ed. 3, 1209–1220 (2011)

    PubMed  Google Scholar 

  73. M.P. Kowalewski, M.T. Dyson, P.R. Manna, D.M. Stocco, Involvement of peroxisome proliferator-activated receptor gamma in gonadal steroidogenesis and steroidogenic acute regulatory protein expression. Reprod. Fertil. Dev. 21, 909–922 (2009)

    CAS  PubMed  Google Scholar 

  74. B. El-Asmar, X.C. Giner, J.J. Tremblay, Transcriptional cooperation between NF-kappaB p50 and CCAAT/enhancer binding protein beta regulates Nur77 transcription in Leydig cells. J. Mol. Endocrinol. 42, 131–138 (2009)

    CAS  PubMed  Google Scholar 

  75. L.M. Grønning, M.K. Dahle, K.A. Taskén, S. Enerbäck, L. Hedin, K. Taskén, H.K. Knutsen, Isoform-specific regulation of the CCAAT/enhancer-binding protein family of transcription factors by 3′,5′-cyclic adenosine monophosphate in Sertoli cells. Endocrinology 140, 835–843 (1999)

    PubMed  Google Scholar 

  76. H. Wang, F. Liu, C.F. Millette, D.L. Kilpatrick, Expression of a novel, sterol-insensitive form of sterol regulatory element binding protein 2 (SREBP2) in male germ cells suggests important cell- and stage-specific functions for SREBP targets during spermatogenesis. Mol. Cell. Biol. 22, 8478–8490 (2002)

    CAS  PubMed Central  PubMed  Google Scholar 

  77. M. Carroll, B. Robaire, Null mutation of the transcription factor inhibitor of DNA binding 3 (ID3) in male mice adversely impacts on fertility and reproductive outcome. J. Androl. 33, 667–674 (2012)

    CAS  PubMed  Google Scholar 

  78. J. Chaudhary, J. Johnson, G. Kim, M.K. Skinner, Hormonal regulation and differential actions of the helix–loop–helix transcriptional inhibitors of differentiation (Id1, Id2, Id3, and Id4) in Sertoli cells. Endocrinology 142, 1727–1736 (2001)

    CAS  PubMed  Google Scholar 

  79. J. Chaudhary, M.K. Skinner, The basic helix–loop–helix E2A gene product E47, not E12, is present in differentiating Sertoli cells. Mol. Reprod. Dev. 52, 1–8 (1999)

    CAS  Google Scholar 

  80. T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003)

    CAS  PubMed  Google Scholar 

  81. T. Yamauchi, Y. Nio, T. Maki, M. Kobayashi, T. Takazawa, M. Iwabu, M. Okada-Iwabu, S. Kawamoto, N. Kubota, T. Kubota, Y. Ito, J. Kamon, A. Tsuchida, K. Kumagai, H. Kozono, Y. Hada, H. Ogata, K. Tokuyama, M. Tsunoda, T. Ide, K. Murakami, M. Awazawa, I. Takamoto, P. Froguel, K. Hara, K. Tobe, R. Nagai, K. Ueki, T. Kadowaki, Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332–339 (2007)

    CAS  PubMed  Google Scholar 

  82. M. Bjursell, A. Ahnmark, M. Bohlooly-Y, L. William-Olsson, M. Rhedin, X.-R. Peng, K. Ploj, A.-K. Gerdin, G. Arnerup, A. Elmgren, A.-L. Berg, J. Oscarsson, D. Lindén, Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes 56, 583–593 (2007)

    CAS  PubMed  Google Scholar 

  83. K. Kos, A.L. Harte, N.F. da Silva, A. Tonchev, G. Chaldakov, S. James, D.R. Snead, B. Hoggart, J.P. O’Hare, P.G. McTernan, S. Kumar, Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J. Clin. Endocrinol. Metab. 92, 1129–1136 (2007)

    CAS  PubMed  Google Scholar 

  84. F. Rodriguez-Pacheco, A.J. Martinez-Fuentes, S. Tovar, L. Pinilla, M. Tena-Sempere, C. Dieguez, J.P. Castaño, M.M. Malagon, Regulation of pituitary cell function by adiponectin. Endocrinology 148, 401–410 (2007)

    CAS  PubMed  Google Scholar 

  85. J.E. Caminos, R. Nogueiras, F. Gaytán, R. Pineda, C.R. González, M.L. Barreiro, J.P. Castaño, M.M. Malagón, L. Pinilla, J. Toppari, C. Diéguez, M. Tena-Sempere, Novel expression and direct effects of adiponectin in the rat testis. Endocrinology 149, 3390–3402 (2008)

    CAS  PubMed  Google Scholar 

  86. E. Lord, S. Ledoux, B.D. Murphy, D. Beaudry, M.F. Palin, Expression of adiponectin and its receptors in swine. J. Anim. Sci. 83, 565–578 (2005)

    CAS  PubMed  Google Scholar 

  87. S. Ledoux, D.B. Campos, F.L. Lopes, M. Dobias-Goff, M.-F. Palin, B.D. Murphy, Adiponectin induces periovulatory changes in ovarian follicular cells. Endocrinology 147, 5178–5186 (2006)

    CAS  PubMed  Google Scholar 

  88. R. Ramachandran, O.M. Ocón-Grove, S.L. Metzger, Molecular cloning and tissue expression of chicken AdipoR1 and AdipoR2 complementary deoxyribonucleic acids. Domest. Anim. Endocrinol. 33, 19–31 (2007)

    CAS  PubMed  Google Scholar 

  89. C. Chabrolle, L. Tosca, S. Crochet, S. Tesseraud, J. Dupont, Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: potential role in ovarian steroidogenesis. Domest. Anim. Endocrinol. 33, 480–487 (2007)

    CAS  PubMed  Google Scholar 

  90. A.E. Civitarese, C.P. Jenkinson, D. Richardson, M. Bajaj, K. Cusi, S. Kashyap, R. Berria, R. Belfort, R.A. DeFronzo, L.J. Mandarino, E. Ravussin, Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia 47, 816–820 (2004)

    CAS  PubMed  Google Scholar 

  91. C. Hug, J. Wang, N.S. Ahmad, J.S. Bogan, T.-S. Tsao, H.F. Lodish, T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci. USA 101, 10308–10313 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  92. K. Asada, H. Yoshiji, R. Noguchi, Y. Ikenaka, M. Kitade, K. Kaji, J. Yoshii, K. Yanase, T. Namisaki, M. Yamazaki, T. Tsujimoto, T. Akahane, M. Uemura, H. Fukui, Crosstalk between high-molecular-weight adiponectin and T-cadherin during liver fibrosis development in rats. Int. J. Mol. Med. 20, 725–729 (2007)

    CAS  PubMed  Google Scholar 

  93. M.S. Denzel, M.-C. Scimia, P.M. Zumstein, K. Walsh, P. Ruiz-Lozano, B. Ranscht, T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest. 120, 4342–4352 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  94. T. Takeuchi, Y. Adachi, Y. Ohtsuki, M. Furihata, Adiponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med. Mol. Morphol. 40, 115–120 (2007)

    CAS  PubMed  Google Scholar 

  95. A.V. Andreeva, J. Han, M.A. Kutuzov, J. Profirovic, V.A. Tkachuk, T.A. Voyno-Yasenetskaya, T-cadherin modulates endothelial barrier function. J. Cell. Physiol. 223, 94–102 (2010)

    CAS  PubMed  Google Scholar 

  96. S.B. Munro, O.W. Blaschuk, A comprehensive survey of the cadherins expressed in the testes of fetal, immature, and adult mice utilizing the polymerase chain reaction. Biol. Reprod. 55, 822–827 (1996)

    CAS  PubMed  Google Scholar 

  97. X. Mao, C.K. Kikani, R.A. Riojas, P. Langlais, L. Wang, F.J. Ramos, Q. Fang, C.Y. Christ-Roberts, J.Y. Hong, R.-Y. Kim, F. Liu, L.Q. Dong, APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol. 8, 516–523 (2006)

    CAS  PubMed  Google Scholar 

  98. M.J. Yoon, G.Y. Lee, J–.J. Chung, Y.H. Ahn, S.H. Hong, J.B. Kim, Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55, 2562–2570 (2006)

    CAS  PubMed  Google Scholar 

  99. T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002)

    CAS  PubMed  Google Scholar 

  100. Y. Li, D.H. Ramdhan, H. Naito, N. Yamagishi, Y. Ito, Y. Hayashi, Y. Yanagiba, A. Okamura, H. Tamada, F.J. Gonzalez, T. Nakajima, Ammonium perfluorooctanoate may cause testosterone reduction by adversely affecting testis in relation to PPARα. Toxicol. Lett. 205, 265–272 (2011)

    CAS  PubMed  Google Scholar 

  101. L. Brion, P.M. Maloberti, N.V. Gomez, C. Poderoso, A.B. Gorostizaga, M.M.M.S. Garcia, A.B. Acquier, M. Cooke, C.F. Mendez, E.J. Podesta, C. Paz, MAPK phosphatase-1 (MKP-1) expression is up-regulated by hCG/cAMP and modulates steroidogenesis in MA-10 Leydig cells. Endocrinology 152, 2665–2677 (2011)

    CAS  PubMed  Google Scholar 

  102. S.W. Ahn, G.-T. Gang, S. Tadi, B. Nedumaran, Y.D. Kim, J.H. Park, G.R. Kweon, S.-H. Koo, K. Lee, R.-S. Ahn, Y.-H. Yim, C.-H. Lee, R.A. Harris, H.-S. Choi, Phosphoenolpyruvate carboxykinase and glucose-6-phosphatase are required for steroidogenesis in testicular Leydig cells. J. Biol. Chem. 287, 41875–41887 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  103. L. Tosca, C. Chabrolle, J. Dupont, AMPK: a link between metabolism and reproduction? Médecine Sci. 24, 297–300 (2008)

    Google Scholar 

  104. L. Tosca, P. Froment, P. Solnais, P. Ferré, F. Foufelle, J. Dupont, Adenosine 5′-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology 146, 4500–4513 (2005)

    CAS  PubMed  Google Scholar 

  105. L. Tosca, C. Chabrolle, S. Uzbekova, J. Dupont, Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK). Biol. Reprod. 76, 368–378 (2007)

    CAS  PubMed  Google Scholar 

  106. R. Ouedraogo, X. Wu, S.-Q. Xu, L. Fuchsel, H. Motoshima, K. Mahadev, K. Hough, R. Scalia, B.J. Goldstein, Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: evidence for involvement of a cAMP signaling pathway. Diabetes 55, 1840–1846 (2006)

    CAS  PubMed  Google Scholar 

  107. P. Park, H. Huang, M.R. McMullen, K. Bryan, L.E. Nagy, Activation of cyclic-AMP response element binding protein contributes to adiponectin-stimulated interleukin-10 expression in RAW 264.7 macrophages. J. Leukoc. Biol. 83, 1258–1266 (2008)

    CAS  PubMed  Google Scholar 

  108. J.-P. Wen, W.-S. Lv, J. Yang, A.-F. Nie, X.-B. Cheng, Y. Yang, Y. Ge, X.-Y. Li, G. Ning, Globular adiponectin inhibits GnRH secretion from GT1-7 hypothalamic GnRH neurons by induction of hyperpolarization of membrane potential. Biochem. Biophys. Res. Commun. 371, 756–761 (2008)

    CAS  PubMed  Google Scholar 

  109. N. Kubota, W. Yano, T. Kubota, T. Yamauchi, S. Itoh, H. Kumagai, H. Kozono, I. Takamoto, S. Okamoto, T. Shiuchi, R. Suzuki, H. Satoh, A. Tsuchida, M. Moroi, K. Sugi, T. Noda, H. Ebinuma, Y. Ueta, T. Kondo, E. Araki, O. Ezaki, R. Nagai, K. Tobe, Y. Terauchi, K. Ueki, Y. Minokoshi, T. Kadowaki, Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007)

    CAS  PubMed  Google Scholar 

  110. A. Psilopanagioti, H. Papadaki, E.F. Kranioti, T.K. Alexandrides, J.N. Varakis, Expression of adiponectin and adiponectin receptors in human pituitary gland and brain. Neuroendocrinology 89, 38–47 (2009)

    CAS  PubMed  Google Scholar 

  111. M. Mitchell, D.T. Armstrong, R.L. Robker, R.J. Norman, Adipokines: implications for female fertility and obesity. Reprod. Camb. Engl. 130, 583–597 (2005)

    CAS  Google Scholar 

  112. T.P. Combs, U.B. Pajvani, A.H. Berg, Y. Lin, L.A. Jelicks, M. Laplante, A.R. Nawrocki, M.W. Rajala, A.F. Parlow, L. Cheeseboro, Y–.Y. Ding, R.G. Russell, D. Lindemann, A. Hartley, G.R.C. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti, P.E. Scherer, A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145, 367–383 (2004)

    CAS  PubMed  Google Scholar 

  113. N. Kubota, Y. Terauchi, T. Yamauchi, T. Kubota, M. Moroi, J. Matsui, K. Eto, T. Yamashita, J. Kamon, H. Satoh, W. Yano, P. Froguel, R. Nagai, S. Kimura, T. Kadowaki, T. Noda, Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002)

    CAS  PubMed  Google Scholar 

  114. K. Ma, A. Cabrero, P.K. Saha, H. Kojima, L. Li, B.H.-J. Chang, A. Paul, L. Chan, Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J. Biol. Chem. 277, 34658–34661 (2002)

    CAS  PubMed  Google Scholar 

  115. N. Maeda, I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, N. Furuyama, H. Kondo, M. Takahashi, Y. Arita, R. Komuro, N. Ouchi, S. Kihara, Y. Tochino, K. Okutomi, M. Horie, S. Takeda, T. Aoyama, T. Funahashi, Y. Matsuzawa, Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731–737 (2002)

    CAS  PubMed  Google Scholar 

  116. W. Pan, H. Tu, A.J. Kastin, Differential BBB interactions of three ingestive peptides: obestatin, ghrelin, and adiponectin. Peptides 27, 911–916 (2006)

    CAS  PubMed  Google Scholar 

  117. J. Spranger, S. Verma, I. Göhring, T. Bobbert, J. Seifert, A.L. Sindler, A. Pfeiffer, S.M. Hileman, M. Tschöp, W.A. Banks, Adiponectin does not cross the blood–brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 55, 141–147 (2006)

    CAS  PubMed  Google Scholar 

  118. Y. Qi, N. Takahashi, S.M. Hileman, H.R. Patel, A.H. Berg, U.B. Pajvani, P.E. Scherer, R.S. Ahima, Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004)

    CAS  PubMed  Google Scholar 

  119. C.M. Kusminski, P.G. McTernan, T. Schraw, K. Kos, J.P. O’Hare, R. Ahima, S. Kumar, P.E. Scherer, Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 50, 634–642 (2007)

    CAS  PubMed  Google Scholar 

  120. X.-B. Cheng, J.-P. Wen, J. Yang, Y. Yang, G. Ning, X.-Y. Li, GnRH secretion is inhibited by adiponectin through activation of AMP-activated protein kinase and extracellular signal-regulated kinase. Endocrine 39, 6–12 (2011)

    CAS  PubMed  Google Scholar 

  121. J.-P. Wen, C. Liu, W.-K. Bi, Y.-T. Hu, Q. Chen, H. Huang, J.-X. Liang, L.-T. Li, L.-X. Lin, G. Chen, Adiponectin inhibits KISS1 gene transcription through AMPK and specificity protein-1 in the hypothalamic GT1-7 neurons. J. Endocrinol. 214, 177–189 (2012)

    CAS  PubMed  Google Scholar 

  122. M. Lu, Q. Tang, J.M. Olefsky, P.L. Mellon, N.J.G. Webster, Adiponectin activates adenosine monophosphate-activated protein kinase and decreases luteinizing hormone secretion in LbetaT2 gonadotropes. Mol. Endocrinol. Baltim. Md. 22, 760–771 (2008)

    CAS  Google Scholar 

  123. O.M. Ocón-Grove, S.M. Krzysik-Walker, S.R. Maddineni, G.L. Hendricks 3rd, R. Ramachandran, Adiponectin and its receptors are expressed in the chicken testis: influence of sexual maturation on testicular ADIPOR1 and ADIPOR2 mRNA abundance. Reprod. Camb. Engl. 136, 627–638 (2008)

    Google Scholar 

  124. A. Pfaehler, M.K. Nanjappa, E.S. Coleman, M. Mansour, D. Wanders, E.P. Plaisance, R.L. Judd, B.T. Akingbemi, Regulation of adiponectin secretion by soy isoflavones has implication for endocrine function of the testis. Toxicol. Lett. 209, 78–85 (2012)

    CAS  PubMed  Google Scholar 

  125. J.E. Caminos, R. Nogueiras, R. Gallego, S. Bravo, S. Tovar, T. García-Caballero, F.F. Casanueva, C. Diéguez, Expression and regulation of adiponectin and receptor in human and rat placenta. J. Clin. Endocrinol. Metab. 90, 4276–4286 (2005)

    CAS  PubMed  Google Scholar 

  126. P. Li, F. Sun, H.-M. Cao, Q.-Y. Ma, C.-M. Pan, J.-H. Ma, X.-N. Zhang, H. Jiang, H.-D. Song, M.-D. Chen, Expression of adiponectin receptors in mouse adrenal glands and the adrenocortical Y-1 cell line: adiponectin regulates steroidogenesis. Biochem. Biophys. Res. Commun. 390, 1208–1213 (2009)

    CAS  PubMed  Google Scholar 

  127. K.A. Toulis, D.G. Goulis, D. Farmakiotis, N.A. Georgopoulos, I. Katsikis, B.C. Tarlatzis, I. Papadimas, D. Panidis, Adiponectin levels in women with polycystic ovary syndrome: a systematic review and a meta-analysis. Hum. Reprod. Updat. 15, 297–307 (2009)

    CAS  Google Scholar 

  128. M. Otani, M. Kogo, S. Furukawa, S. Wakisaka, T. Maeda, The adiponectin paralog C1q/TNF-related protein 3 (CTRP3) stimulates testosterone production through the cAMP/PKA signaling pathway. Cytokine 58, 238–244 (2012)

    CAS  PubMed  Google Scholar 

  129. D.V. Lagaly, P.Y. Aad, J.A. Grado-Ahuir, L.B. Hulsey, L.J. Spicer, Role of adiponectin in regulating ovarian theca and granulosa cell function. Mol. Cell. Endocrinol. 284, 38–45 (2008)

    CAS  PubMed  Google Scholar 

  130. C. Chabrolle, L. Tosca, C. Ramé, P. Lecomte, D. Royère, J. Dupont, Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil. Steril. 92, 1988–1996 (2009)

    CAS  PubMed  Google Scholar 

  131. J.S. Richards, Z. Liu, T. Kawai, K. Tabata, H. Watanabe, D. Suresh, F.-T. Kuo, M.D. Pisarska, M. Shimada, Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil. Steril. 98, 471–479 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  132. M.-C.M. Shih, Y.-N. Chiu, M.-C. Hu, I.-C. Guo, B. Chung, Regulation of steroid production: analysis of Cyp11a1 promoter. Mol. Cell. Endocrinol. 336, 80–84 (2011)

    CAS  PubMed  Google Scholar 

  133. P. Pena, A.T. Reutens, C. Albanese, M. D’Amico, G. Watanabe, A. Donner, I.W. Shu, T. Williams, R.G. Pestell, Activator protein-2 mediates transcriptional activation of the CYP11A1 gene by interaction with Sp1 rather than binding to DNA. Mol. Endocrinol. Baltim. Md. 13, 1402–1416 (1999)

    CAS  Google Scholar 

  134. T. Sugawara, M. Saito, S. Fujimoto, Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression. Endocrinology 141, 2895–2903 (2000)

    CAS  PubMed  Google Scholar 

  135. K. Momoi, M.R. Waterman, E.R. Simpson, U.M. Zanger, 3′,5′-Cyclic adenosine monophosphate-dependent transcription of the CYP11A (cholesterol side chain cleavage cytochrome P450) gene involves a DNA response element containing a putative binding site for transcription factor Sp1. Mol. Endocrinol. Baltim. Md. 6, 1682–1690 (1992)

    CAS  Google Scholar 

  136. H. Lin, C.-H. Yu, C.-Y. Jen, C.-F. Cheng, Y. Chou, C–.C. Chang, S.-H. Juan, Adiponectin-mediated heme oxygenase-1 induction protects against iron-induced liver injury via a PPARα dependent mechanism. Am. J. Pathol. 177, 1697–1709 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  137. L.-F. Liu, W.-J. Shen, Z.H. Zhang, L.J. Wang, F.B. Kraemer, Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin. J. Cell. Physiol. 225, 837–845 (2010)

    CAS  PubMed  Google Scholar 

  138. F.-P. Lee, C.-Y. Jen, C–.C. Chang, Y. Chou, H. Lin, C.-M. Chou, S.-H. Juan, Mechanisms of adiponectin-mediated COX-2 induction and protection against iron injury in mouse hepatocytes. J. Cell. Physiol. 224, 837–847 (2010)

    CAS  PubMed  Google Scholar 

  139. L. Wu, B. Xu, W. Fan, X. Zhu, G. Wang, A. Zhang, Adiponectin protects Leydig cells against proinflammatory cytokines by suppressing the nuclear factor-κB signaling pathway. FEBS J. 280, 3920–3927 (2013)

    CAS  PubMed  Google Scholar 

  140. C.Y. Hong, J.H. Park, R.S. Ahn, S.Y. Im, H.-S. Choi, J. Soh, S.H. Mellon, K. Lee, Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol. Cell. Biol. 24, 2593–2604 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  141. C.D.B. Fernandez, F.F. Bellentani, G.S.A. Fernandes, J.E. Perobelli, A.P.A. Favareto, A.F. Nascimento, A.C. Cicogna, W.D.G. Kempinas, Diet-induced obesity in rats leads to a decrease in sperm motility. Reprod. Biol. Endocrinol. 9, 32 (2011)

    PubMed Central  PubMed  Google Scholar 

  142. F. Erdemir, D. Atilgan, F. Markoc, O. Boztepe, B. Suha-Parlaktas, S. Sahin, The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters. Actas Urol. Españolas. 36, 153–159 (2012)

    CAS  Google Scholar 

  143. Thomas, S., Kratzsch, D., Schaab, M., Scholz, M., Grunewald, S., Thiery, J., Paasch, U., Kratzsch, J.: Seminal plasma adipokine levels are correlated with functional characteristics of spermatozoa. Fertil. Steril. 99, 1256–1263 (2013)

    Google Scholar 

  144. Kasimanickam, V.R., Kasimanickam, R.K., Kastelic, J.P., Stevenson, J.S.: Associations of adiponectin and fertility estimates in Holstein bulls. Theriogenology 79, 766–777 (2013)

    Google Scholar 

  145. F. Rahmanifar, M.R. Tabandeh, Adiponectin and its receptors gene expression in the reproductive tract of ram. Small Rumin. Res. 105, 263–267 (2012)

    Google Scholar 

  146. M.H. Dai, T. Xia, G.D. Zhang, X.D. Chen, L. Gan, S.Q. Feng, H. Qiu, Y. Peng, Z.Q. Yang, Cloning, expression and chromosome localization of porcine adiponectin and adiponectin receptors genes. Domest. Anim. Endocrinol. 30, 117–125 (2006)

    CAS  PubMed  Google Scholar 

  147. M. Archanco, J. Gómez-Ambrosi, M. Tena-Sempere, G. Frühbeck, M.A. Burrell, Expression of leptin and adiponectin in the rat oviduct. J. Histochem. Cytochem. Off. J. Histochem. Soc. 55, 1027–1037 (2007)

    CAS  Google Scholar 

  148. E.R.M. Hofny, M.E. Ali, H.Z. Abdel-Hafez, E.E.-D. Kamal, E.E. Mohamed, H.G. Abd El-Azeem, T. Mostafa, Semen parameters and hormonal profile in obese fertile and infertile males. Fertil. Steril. 94, 581–584 (2010)

    CAS  PubMed  Google Scholar 

  149. A. Taylor, ABC of subfertility: extent of the problem. BMJ 327, 434–436 (2003)

    PubMed Central  PubMed  Google Scholar 

  150. R. Pasquali, L. Patton, A. Gambineri, Obesity and infertility. Curr. Opin. Endocrinol. Diabetes Obes. 14, 482–487 (2007)

    PubMed  Google Scholar 

  151. R. Ramachandran, S. Maddineni, O. Ocón-Grove, G. Hendricks 3rd, R. Vasilatos-Younken, J.A. Hadley, Expression of adiponectin and its receptors in avian species. Gen. Comp. Endocrinol. 190, 88–95 (2013)

    CAS  PubMed  Google Scholar 

  152. C. Lee, C.-H. Huang, LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization. Biotechniques 54, 141–153 (2013)

    CAS  PubMed  Google Scholar 

  153. E. Wingender, P. Dietze, H. Karas, R. Knüppel, TRANSFAC: a database on transcription factors and their DNA binding sites. Nucl. Acids Res. 24, 238–241 (1996)

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Current work was funded by the New Brunswick Health Research Foundation (NBHRF), Canada.

Disclosure

The author declares that there is no conflict of interest that would prejudice his impartiality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc J. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L.J. Implications of adiponectin in linking metabolism to testicular function. Endocrine 46, 16–28 (2014). https://doi.org/10.1007/s12020-013-0102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0102-0

Keywords

Navigation