Skip to main content
Log in

New advances in imaging osteoporosis and its complications

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Tremendous advances have been made over the past several decades in assessing osteoporosis and its complications. High resolution imaging combined with sophisticated computational techniques now provide a detailed analysis of bone structure and a much more accurate prediction of bone strength. These techniques have shown how different mechanisms of age-related bone weakening exist in males and females. Limitations peculiar to these more advanced imaging techniques currently hinder their adoption into mainstream clinical practice. As such, the ultimate quest remains a readily available, safe, high resolution technique capable of fully predicting bone strength, capable of showing how bone strength is faltering and precisely monitoring treatment effect. Whether this technique will be based on acquisition of spine/hip data or data obtained at peripheral sites reflective of changes happening in the spine and hip regions is still not clear. In the meantime, mainstream imaging will continue to improve the detection of osteoporosis related insufficiency fracture in the clinical setting. We, as clinicians, should aim to increase awareness of this fracture type both as a frequent and varied source of pain in patients with osteoporosis and as the ultimate marker of severely impaired bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Mazziotti, J. Bilezikian, E. Canalis, D. Cocchi, A. Giustina, New understanding and treatments for osteoporosis. Endocrine 41, 58–69 (2012)

    Article  PubMed  CAS  Google Scholar 

  2. J. Compston, The use of combination therapy in the treatment of postmenopausal osteoporosis. Endocrine 41, 11–18 (2012)

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organisation, Assessment of fracture risk and its implication to screening for postmenopausal osteoporosis. World Health Organ. Tech. Rep. Ser. 843, 1–129 (1994)

    Google Scholar 

  4. H.S. Lynn, E.M. Lau, B. Au, P.C. Leung, Bone mineral density reference norms for Hong Kong Chinese. Osteoporos. Int. 16, 1663–1668 (2005)

    Article  PubMed  CAS  Google Scholar 

  5. E.W. Yu, B.J. Thomas, J.K. Brown, J.S. Finkelstein, Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J. Bone Miner. Res. (2011). doi:10.1002/jbmr.506

    Google Scholar 

  6. G.M. Blake, J.F. Griffith, D.K. Yeung, P.C. Leung, I. Fogelman, Effect of increasing vertebral marrow fat content on BMD measurement, T-score status and fracture risk prediction by DXA. Bone 44, 495–501 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. D. Marshall, O. Johnell, H. Wedel, Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312, 1254–1259 (1996)

    Article  PubMed  CAS  Google Scholar 

  8. J.A. Kanis, An update on the diagnosis of osteoporosis. Curr. Rheumatol. Rep. 2, 62–66 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, Osteoporosis prevention, diagnosis, and therapy. JAMA 285, 785–795 (2001)

    Google Scholar 

  10. E. Sornay-Rendu, F. Munoz, P. Garnero, F. Duboeuf, P.D. Delmas, Identification of osteopenic women at high risk of fracture: the OFELY study. J. Bone Miner. Res. 20, 1813–1819 (2005)

    Article  PubMed  Google Scholar 

  11. S.C. Schuit, M. van der Klift, A.E. Weel, C.E. de Laet, H. Burger, E. Seeman, A. Hofman, A.G. Uitterlinden, J.P. van Leeuwen, H.A. Pols, Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 38, 603 (2006)

    Article  Google Scholar 

  12. S.R. Cummings, D.B. Karpf, F. Harris, H.K. Genant, K. Ensrud, A.Z. LaCroix, D.M. Black, Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am. J. Med. 112, 281–289 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. P.D. Delmas, Z. Li, C. Cooper, Relationship between changes in bone mineral density and fracture risk reduction with antiresorptive drugs: some issues with meta-analyses. J. Bone Miner. Res. 19, 330–337 (2004)

    Article  PubMed  CAS  Google Scholar 

  14. J.T. Schousboe, T. Vokes, S.B. Broy, L. Ferrar, F. McKiernan, C. Roux, N. Binkley, Vertebral fracture assessment: the 2007 ISCD official positions. J. Clin. Densitom. 11, 92–108 (2008)

    Article  PubMed  Google Scholar 

  15. J.A. Kanis, O. Johnell, A. Oden, H. Johansson, E. McCloskey, FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos. Int. 19, 385–397 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. A.S. Karlamangla, E. Barrett-Connor, J. Young, G.A. Greendale, Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos. Int. 15, 62–70 (2004)

    Article  PubMed  Google Scholar 

  17. N. Yu, Y.J. Liu, Y. Pei, L. Zhang, S. Lei, N.R. Kothari, D.Y. Li, C.J. Papasian, J. Hamilton, J.Q. Cai, H.W. Deng, Evaluation of compressive strength index of the femoral neck in Caucasians and Chinese. Calcif. Tissue Int. 87, 324–332 (2010)

    Article  PubMed  CAS  Google Scholar 

  18. K.G. Faulkner, W.K. Wacker, H.S. Barden, C. Simonelli, P.K. Burke, S. Ragi, L. Del Rio, Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos. Int. 17, 593–599 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. S. Ishii, J.A. Cauley, C.J. Crandall, P. Srikanthan, G.A. Greendale, M.H. Huang, M.E. Danielson, A.S. Karlamangla, Diabetes and femoral neck strength: findings from the hip strength across the menopausal transition study. J. Clin. Endocrinol. Metab. 97, 190–197 (2012)

    Article  PubMed  CAS  Google Scholar 

  20. S. Kolta, A. Le Bras, D. Mitton, V. Bousson, J.A. de Guise, J. Fechtenbaum, J.D. Laredo, C. Roux, W. Skalli, Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device. Osteoporos. Int. 16, 969–976 (2005)

    Article  PubMed  CAS  Google Scholar 

  21. A. Le Bras, S. Kolta, P. Soubrane, W. Skalli, C. Roux, D. Mitton, Assessment of femoral neck strength by 3-dimensional X-ray absorptiometry. J. Clin. Densitom. 9, 425–430 (2006)

    Article  PubMed  Google Scholar 

  22. O. Ahmad, K. Ramamurthi, K.E. Wilson, K. Engelke, R.L. Prince, R.H. Taylor, Volumetric DXA (VXA): a new method to extract 3D information from multiple in vivo DXA images. J. Bone Miner. Res. 25, 2744–2751 (2011). Erratum in: J. Bone Miner. Res. 26, 439 (2011)

    Article  Google Scholar 

  23. A. Andreoli, A. De Lorenzo, F. Cadeddu, L. Iacopino, M. Grande, New trends in nutritional status assessment of cancer patients. Eur. Rev. Med. Pharmacol. Sci. 15, 469–480 (2011)

    PubMed  CAS  Google Scholar 

  24. Bazzocchi A, Ciccarese F, Diano D, Spinnato P, Albisinni U, Rossi C, Guglielmi G. Dual-Energy X-ray Absorptiometry in the Evaluation of Abdominal Aortic Calcifications J. Clin. Densitom. 15, 198–204 (2012)

    Google Scholar 

  25. J.F. Griffith, S.M. Kumta, Y. Huang, Hard arteries, weak bones. Skeletal Radiol. 40, 517–521 (2011)

    Article  PubMed  Google Scholar 

  26. H.K. Genant, K. Engelke, S. Prevrhal, Advanced CT bone imaging in osteoporosis. Rheumatology (Oxford) 47, iv9–16 (2008)

    Google Scholar 

  27. E. Seeman, The structural basis of bone fragility in men. Bone 25, 143–147 (1999)

    Article  PubMed  CAS  Google Scholar 

  28. Y. Duan, X.F. Wang, A. Evans, E. Seeman, Structural and biomechanical basis of racial and sex differences in vertebral fragility in Chinese and Caucasians. Bone 36, 987–998 (2005)

    Article  PubMed  Google Scholar 

  29. M.L. Bouxsein, E. Seeman, Quantifying the material and structural determinants of bone strength. Best Pract. Res. Clin. Rheumatol. 23, 741–753 (2009)

    Article  PubMed  Google Scholar 

  30. B.L. Riggs, L.J. Melton 3rd, R.A. Robb, J.J. Camp, E.J. Atkinson, J.M. Peterson, P.A. Rouleau, C.H. McCollough, M.L. Bouxsein, S. Khosla, Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J. Bone Miner. Res. 19, 1945–1954 (2004)

    Article  PubMed  Google Scholar 

  31. H.K. Genant, M. Jergas, L. Palermo, M. Nevitt, R.S. Valentin, D. Black, S.R. Cummings, Comparison of semiquantitative visual and quantitative morphornetric assessment of prevalent and incident vertebral fractures in osteoporosis The Study of Osteoporotic Fractures Research Group. J. Bone Miner. Res. 11, 984–996 (1996)

    Article  PubMed  CAS  Google Scholar 

  32. X. Banse, J.P. Devogelaer, M. Grynpas, Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone 30, 829–835 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. B.A. Christiansen, M.L. Bouxsein, Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr. Osteoporos. Rep. 8, 198–204 (2010)

    Article  PubMed  Google Scholar 

  34. A.J. Fields, G.L. Lee, X.S. Liu, M.G. Jekir, X.E. Guo, T.M. Keaveny, Influence of vertical trabeculae on the compressive strength of the human vertebra. J. Bone Miner. Res. 26, 263–269 (2011)

    Article  PubMed  Google Scholar 

  35. J.S. Thomsen, E.N. Ebbesen, L.I. Mosekilde, Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone 31, 136–142 (2002)

    Article  PubMed  CAS  Google Scholar 

  36. X. Shi, X.S. Liu, X. Wang, X.E. Guo, G.L. Niebur, Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone 46, 1260–1266 (2010)

    Article  PubMed  Google Scholar 

  37. P. Mc Donnell, N. Harrison, M.A. Liebschner, P.E. Mc Hugh, Simulation of vertebral trabecular bone loss using voxel finite element analysis. J. Biomech. 42, 2789–2796 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. T.M. Keaveny, Biomechanical computed tomography—noninvasive bone strength analysis using clinical computed tomography scans. Ann. N. Y. Acad. Sci. 1192, 57–65 (2010)

    Article  PubMed  Google Scholar 

  39. B.A. Christiansen, D.L. Kopperdahl, D.P. Kiel, T.M. Keaveny, M.L. Bouxsein, Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J. Bone Miner. Res. 26, 974–983 (2011)

    Article  PubMed  Google Scholar 

  40. K.M. Kim, J.K. Brown, K.J. Kim, H.S. Choi, H.N. Kim, Y. Rhee, S.K. Lim, Differences in femoral neck geometry associated with age and ethnicity. Osteoporos. Int. 22, 2165–2174 (2011)

    Article  PubMed  CAS  Google Scholar 

  41. R.D. Carpenter, S. Sigurdsson, S. Zhao, Y. Lu, G. Eiriksdottir, G. Sigurdsson, B.Y. Jonsson, S. Prevrhal, T.B. Harris, K. Siggeirsdottir, V. Guðnason, T.F. Lang, Effects of age and sex on the strength and cortical thickness of the femoral neck. Bone 48, 741–747 (2011)

    Article  PubMed  CAS  Google Scholar 

  42. S. Amin, D.L. Kopperdhal, L.J. Melton 3rd, S.J. Achenbach, T.M. Therneau, B.L. Riggs, T.M. Keaveny, S. Khosla, Association of hip strength estimates by finite-element analysis with fractures in women and men. J. Bone Miner. Res. 26, 1593–1600 (2011)

    Article  PubMed  Google Scholar 

  43. T.M. Keaveny, D.L. Kopperdahl, L.J. Melton 3rd, P.F. Hoffmann, S. Amin, B.L. Riggs, S. Khosla, Age-dependence of femoral strength in white women and men. J. Bone Miner. Res. 25, 994–1001 (2010)

    Article  PubMed  Google Scholar 

  44. C. Graeff, Y. Chevalier, M. Charlebois, P. Varga, D. Pahr, T.N. Nickelsen, M.M. Morlock, C.C. Glüer, P.K. Zysset, Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J. Bone Miner. Res. 24, 1672–1680 (2009)

    Article  PubMed  CAS  Google Scholar 

  45. Y. Kang, K. Engelke, C. Fuchs, W.A. Kalender, An anatomic coordinate system of the femoral neck for highly reproducible BMD measurements using 3D QCT. Comput. Med. Imaging Graph 29, 533–541 (2005)

    Article  PubMed  Google Scholar 

  46. K. Engelke, A. Mastmeyer, V. Bousson, T. Fuerst, J.D. Laredo, W.A. Kalender, Reanalysis precision of 3D quantitative computed tomography (QCT) of the spine. Bone 44, 566–572 (2009)

    Article  PubMed  Google Scholar 

  47. K. Engelke, T. Fuerst, G. Dasic, R.Y. Davies, H.K. Genant, Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone 46, 1626–1632 (2010)

    Article  PubMed  Google Scholar 

  48. X.S. Liu, A. Cohen, E. Shane, P.T. Yin, E.M. Stein, H. Rogers, S.L. Kokolus, D.J. McMahon, J.M. Lappe, R.R. Recker, T. Lang, X.E. Guo, Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J. Bone Miner. Res. 25, 2229–2238 (2010)

    Article  PubMed  Google Scholar 

  49. S. Khosla, B.L. Riggs, E.J. Atkinson, A.L. Oberg, L.J. McDaniel, M. Holets, J.M. Peterson, L.J. Melton 3rd, Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21, 124–131 (2006)

    Article  PubMed  Google Scholar 

  50. B.L. Riggs, L.J. Melton, R.A. Robb, J.J. Camp, E.J. Atkinson, L. McDaniel, S. Amin, P.A. Rouleau, S. Khosla, A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J. Bone Miner. Res. 23, 205–214 (2008)

    Article  PubMed  Google Scholar 

  51. E. Seeman, P.D. Delmas, D.A. Hanley, D. Sellmeyer, A.M. Cheung, E. Shane, A. Kearns, T. Thomas, S.K. Boyd, S. Boutroy, C. Bogado, S. Majumdar, M. Fan, C. Libanati, J. Zanchetta, Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J. Bone Miner. Res. 25, 1886–1894 (2010)

    Article  PubMed  Google Scholar 

  52. R. Krug, J. Carballido-Gamio, A.J. Burghardt, G. Kazakia, B.H. Hyun, B. Jobke, S. Banerjee, M. Huber, T.M. Link, S. Majumdar, Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo. Osteoporos. Int. 19, 653–661 (2008)

    Article  PubMed  CAS  Google Scholar 

  53. F.W. Wehrli, M.B. Leonard, P.K. Saha, B.R. Gomberg, Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J. Magn. Reson. Imaging 20, 83–89 (2004)

    Article  PubMed  Google Scholar 

  54. R. Krug, S. Banerjee, E.T. Han, D.C. Newitt, T.M. Link, S. Majumdar, Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos. Int. 16, 1307–1314 (2005). Erratum in: Osteoporos. Int. 17, 1705 (2006)

    Article  PubMed  Google Scholar 

  55. C.H. Chesnut 3rd, S. Majumdar, D.C. Newitt, A. Shields, J. Van Pelt, E. Laschansky, M. Azria, A. Kriegman, M. Olson, E.F. Eriksen, L. Mindeholm, Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J. Bone Miner. Res. 20, 1548–1561 (2005)

    Article  PubMed  CAS  Google Scholar 

  56. C.H. Chesnut 3rd, S. Silverman, K. Andriano, H. Genant, A. Gimona, S. Harris, D. Kiel, M. LeBoff, M. Maricic, P. Miller, C. Moniz, M. Peacock, P. Richardson, N. Watts, D. Baylink, A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am. J. Med. 109, 267–276 (2000)

    Article  PubMed  CAS  Google Scholar 

  57. R. Krug, A.J. Burghardt, S. Majumdar, T.M. Link, High-resolution imaging techniques for the assessment of osteoporosis. Radiol. Clin. North Am. 48, 601–621 (2010)

    Article  PubMed  Google Scholar 

  58. V. Bousson, C. Bergot, A. Meunier, F. Barbot, C. Parlier-Cuau, A.M. Laval-Jeantet, J.D. Laredo, CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity. Radiology 217, 179–187 (2000)

    PubMed  CAS  Google Scholar 

  59. A. Techawiboonwong, H.K. Song, M.B. Leonard, F.W. Wehrli, Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology 248, 824–833 (2008)

    Article  PubMed  Google Scholar 

  60. P. Meunier, J. Aaron, C. Edouard, G. Vignon, Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80, 147–154 (1971)

    Article  PubMed  CAS  Google Scholar 

  61. J.M. Gimble, C.E. Robinson, X. Wu, K.A. Kelly, The function of adipocytes in the bone marrow stroma: an update. Bone 19, 421–428 (1996)

    Article  PubMed  CAS  Google Scholar 

  62. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    Article  PubMed  CAS  Google Scholar 

  63. B. Lecka-Czernik, E.J. Moerman, D.F. Grant, J.M. Lehmann, S.C. Manolagas, R.L. Jilka, Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143, 2376–2384 (2002)

    Article  PubMed  CAS  Google Scholar 

  64. J.M. Gimble, M.E. Nuttall, Bone and fat: old questions, new insights. Endocrine 23, 183–188 (2004)

    Article  PubMed  CAS  Google Scholar 

  65. G. Duque, Bone and fat connection in aging bone. Curr. Opin. Rheumatol. 20, 429–434 (2008)

    Article  PubMed  CAS  Google Scholar 

  66. C.J. Rosen, C. Ackert-Bicknell, J.P. Rodriguez, A.M. Pino, Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. 19, 109–124 (2009)

    Article  PubMed  CAS  Google Scholar 

  67. M.J. Toth, A. Tchernof, C.K. Sites, E.T. Poehlman, Menopause-related changes in body fat distribution. Ann. N. Y. Acad. Sci. 904, 502–506 (2000)

    Article  PubMed  CAS  Google Scholar 

  68. K. Blouin, A. Boivin, A. Tchernof, Androgens and body fat distribution. J. Steroid Biochem. Mol. Biol. 108, 272–280 (2008)

    Article  PubMed  CAS  Google Scholar 

  69. J.F. Griffith, D.K. Yeung, G.E. Antonio, F.K. Lee, A.W. Hong, S.Y. Wong, E.M. Lau, P.C. Leung, Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236, 945–951 (2005)

    Article  PubMed  Google Scholar 

  70. J.F. Griffith, D.K. Yeung, G.E. Antonio, S.Y. Wong, T.C. Kwok, J. Woo, P.C. Leung, Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241, 831–838 (2006)

    Article  PubMed  Google Scholar 

  71. J.F. Griffith, D.K. Yeung, P.H. Tsang, K.C. Choi, T.C. Kwok, A.T. Ahuja, K.S. Leung, P.C. Leung, Compromised bone marrow perfusion in osteoporosis. J. Bone Miner. Res. 23, 1068–1075 (2008)

    Article  PubMed  Google Scholar 

  72. Y.X. Wang, J.F. Griffith, A.W. Kwok, J.C. Leung, D.K. Yeung, A.T. Ahuja, P.C. Leun, Reduced bone perfusion in proximal femur of subjects with decreased bone mineral density preferentially affects the femoral neck. Bone 45, 711–715 (2009)

    Article  PubMed  Google Scholar 

  73. H. Cao, J.L. Ackerman, M.I. Hrovat, L. Graham, M.J. Glimcher, Y. Wu, Quantitative bone matrix density measurement by water- and fat-suppressed proton projection MRI (WASPI) with polymer calibration phantoms. Magn. Reson. Med. 60, 1433–1443 (2008)

    Article  PubMed  CAS  Google Scholar 

  74. H. Cao, A. Nazarian, J.L. Ackerman, B.D. Snyder, A.E. Rosenberg, R.M. Nazarian, M.I. Hrovat, G. Dai, D. Mintzopoulos, Y. Wu, Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models. Bone 46, 1582–1590 (2010)

    Article  PubMed  CAS  Google Scholar 

  75. Y. Wu, M.I. Hrovat, J.L. Ackerman, T.G. Reese, H. Cao, K. Ecklund, M.J. Glimcher, Bone matrix imaged in vivo by water- and fat-suppressed proton projection MRI (WASPI) of animal and human subjects. J. Magn. Reson. Imaging 31, 954–963 (2010)

    Article  PubMed  Google Scholar 

  76. P.D. Delmas, L. van de Langerijt, N.B. Watts, R. Eastell, H. Genant, A. Grauer, D.L. Cahall, IMPACT Study Group, underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J. Bone Miner. Res. 20, 557–563 (2005)

    Article  PubMed  Google Scholar 

  77. National Osteoporosis Foundation, The Clinician’s Guide to Prevention and Treatment of Osteoporosis. National Osteoporosis Foundation. Washington, DC, USA. (2010) [http://www.nof.org/sites/default/files/pdfs/NOF_ClinicianGuide2009_v7.pdf]

  78. C.R. Krestan, U. Nemec, S. Nemec, Imaging of insufficiency fractures. Semin. Musculoskelet. Radiol. 15, 198–207 (2011)

    Article  PubMed  Google Scholar 

  79. A.L. Williams, A. Al-Busaidi, P.J. Sparrow, J.E. Adams, R.W. Whitehouse, Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur. J. Radiol. 69, 179–183 (2009)

    Article  PubMed  Google Scholar 

  80. J.F. Griffith, G. Guglielmi, Vertebral fracture. Radiol. Clin. North Am. 48, 519–529 (2010)

    Article  PubMed  Google Scholar 

  81. A. Biffar, G.P. Schmidt, S. Sourbron, M. D’Anastasi, O. Dietrich, M. Notohamiprodjo, M.F. Reiser, A. Baur-Melnyk, Quantitative analysis of vertebral bone marrow perfusion using dynamic contrast-enhanced MRI: initial results in osteoporotic patients with acute vertebral fracture. J. Magn. Reson. Imaging 33, 676–683 (2011)

    Article  PubMed  Google Scholar 

  82. T. Kanchiku, T. Taguchi, K. Toyoda, K. Fujii, S. Kawai, Dynamic contrast-enhanced magnetic resonance imaging of osteoporotic vertebral fracture. Spine 28, 2522–2526 (2003)

    Article  PubMed  Google Scholar 

  83. T. Tsujio, H. Nakamura, H. Terai, M. Hoshino, T. Namikawa, A. Matsumura, M. Kato, A. Suzuki, K. Takayama, W. Fukushima, K. Kondo, Y. Hirota, K. Takaoka, Characteristic radiographic or magnetic resonance images of fresh osteoporotic vertebral fractures predicting potential risk for nonunion: a prospective multicenter study. Spine 36, 1229–1235 (2011)

    Article  PubMed  Google Scholar 

  84. G. Pathak, M.J. Parker, G.A. Pryor, Delayed diagnosis of femoral neck fractures. Injury 28, 299–301 (1997)

    Article  PubMed  CAS  Google Scholar 

  85. H.A. Chatha, S. Ullah, Z.Z. Cheema, Review article: Magnetic resonance imaging and computed tomography in the diagnosis of occult proximal femur fractures. J. Orthop. Surg. (Hong Kong) 19, 99–103 (2011)

    Google Scholar 

  86. M.C. Cabarrus, A. Ambekar, Y. Lu, T.M. Link, MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am. J. Roentgenol. 191, 995–1001 (2008)

    Article  PubMed  Google Scholar 

  87. Y.P. Lee, J.F. Griffith, G.E. Antonio, N. Tang, K.S. Leung, Early magnetic resonance imaging of radiographically occult osteoporotic fractures of the femoral neck. Hong Kong Med. J. 10, 271–275 (2004)

    PubMed  CAS  Google Scholar 

  88. J.G. Craig, B.R. Moed, W.R. Eyler, M. van Holsbeeck, Fractures of the greater trochanter: intertrochanteric extension shown by MR imaging. Skeletal Radiol. 29, 572–576 (2000)

    Article  PubMed  CAS  Google Scholar 

  89. T. Yamamoto, Y. Iwamoto, R. Schneider, P.G. Bullough, Histopathological prevalence of subchondral insufficiency fracture of the femoral head. Ann. Rheum. Dis. 67, 150–153 (2008)

    Article  PubMed  CAS  Google Scholar 

  90. G. Zhao, T. Yamamoto, S. Ikemura, Y. Nakashima, T. Mawatari, G. Motomura, Y. Iwamoto, A histopathological evaluation of a concave-shaped low-intensity band on T1-weighted MR images in a subchondral insufficiency fracture of the femoral head. Skeletal Radiol. 39, 185–188 (2010)

    Article  PubMed  Google Scholar 

  91. K. Miyanishi, T. Hara, S. Kaminomachi, H. Maeda, H. Watanabe, T. Torisu, Contrast-enhanced MR imaging of subchondral insufficiency fracture of the femoral head: a preliminary comparison with that of osteonecrosis of the femoral head. Arch. Orthop. Trauma Surg. 129, 583–589 (2009)

    Article  PubMed  Google Scholar 

  92. T. Yamamoto, K. Takabatake, Y. Iwamoto, Subchondral insufficiency fracture of the femoral head resulting in rapid destruction of the hip joint: a sequential radiographic study. AJR Am. J. Roentgenol. 178, 435–437 (2002)

    PubMed  Google Scholar 

  93. R. Schneider, J. Yacovone, B. Ghelman, Unsuspected sacral fractures: detection by radionuclide bone scanning. AJR Am. J. Roentgenol. 144, 337–341 (1985)

    PubMed  CAS  Google Scholar 

  94. E.M. Lyders, C.T. Whitlow, M.D. Baker, P.P. Morris, Imaging and treatment of sacral insufficiency fractures. AJNR Am. J. Neuroradiol. 31, 201–210 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Griffith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, J.F., Genant, H.K. New advances in imaging osteoporosis and its complications. Endocrine 42, 39–51 (2012). https://doi.org/10.1007/s12020-012-9691-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9691-2

Keywords

Navigation