Skip to main content

Advertisement

Log in

Clinical Aspects of Hypophosphatasia: An Update

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Hypophosphatasia (HPP) is a heterogeneous rare inborn error of bone and mineral metabolism caused by mutations in the ALPL gene encoding the isoenzyme, tissue-nonspecific alkaline phosphatase (TNAP). These mutations result in a decreased level of TNAP activity and increased levels of its substrates, including inorganic pyrophosphate, pyridoxal-5′-phosphate and phosphoethanolamine. Clinical presentations are highly variable, ranging from stillbirth and absence of mineralization in severe disease to mild dental problems or osteopenia in adulthood. Further clinical symptoms include defective bone mineralization with bone deformities, recurrent fractures, chronic non-bacterial osteomyelitis, craniosynostosis, neonatal seizures, nephrocalcinosis, muscular hypotonia, failure to thrive and dental abnormalities with premature exfoliation of teeth and caries. Prognosis is very poor in severe perinatal forms with most patients dying from pulmonary complications of their skeletal disease but patients with mild phenotypes (adult form or Odonto-HPP) usually do not have a limitation in their life expectancy. Although TNAP is a ubiquitous enzyme, mostly known for its crucial role during mineralization of bone and teeth, its exact biological role in different human organs is still unclear, and the pathophysiology of symptoms due to TNAP deficiency in HPP are not understood in detail. Since inflammation and tissue destruction of the musculoskeletal system may occur in HPP, TNAP may also play an important role in controlling inflammatory processes. Recent investigations provide evidence that TNAP is also essentially involved in the development of the central nervous system and might contribute to multiple functions of the human brain. HPP can be diagnosed on clinical, biochemical and radiological criteria, and genetic testing confirms the diagnosis and is useful for genetic counseling. Since clinical symptoms are highly variable, patients should be followed up by a multidisciplinary team having experience in HPP treatment. Up to now, no curative treatment of HPP is available. Therefore, symptomatic treatment in particular with regard to pain, seizures and other metabolic phenomena is most important. However, recently, enzyme replacement therapy with a bone-targeted recombinant human TNAP molecule has been reported to improve bone mineralization, respiratory function and physical activity in severely affected infants with HPP, and further clinical trials are ongoing. Hopefully, this and other new therapeutic strategies may improve the prognosis and quality of life of patients with HPP and may contribute to our understanding of bone metabolism in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rathbun JC. Hypophosphatasia; a new developmental anomaly. Am J Dis Child. 1948;75(6):822–31.

    PubMed  CAS  Google Scholar 

  2. Mornet E, Beck C, Bloch-Zupan A, Girschick H, Le Merrer M. Clinical utility gene card for: hypophosphatasia. Eur J Hum Genet. 2011. doi:10.1038/ejhg.2010.170.

  3. Zurutuza L, Muller F, Gibrat JF, Taillandier A, Simon-Bouy B, Serre JL, et al. Correlations of genotype and phenotype in hypophosphatasia. Hum Mol Genet. 1999;8(6):1039–46.

    Article  PubMed  CAS  Google Scholar 

  4. Fauvert D, Brun-Heath I, Lia-Baldini AS, Bellazi L, Taillandier A, Serre JL, et al. Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet. 2009;10:51.

    Article  PubMed  Google Scholar 

  5. Lia-Baldini AS, Brun-Heath I, Carrion C, Simon-Bouy B, Serre JL, Nunes ME, et al. A new mechanism of dominance in hypophosphatasia: the mutated protein can disturb the cell localization of the wild-type protein. Hum Genet. 2008;123(4):429–32.

    Article  PubMed  CAS  Google Scholar 

  6. Lia-Baldini AS, Muller F, Taillandier A, Gibrat JF, Mouchard M, Robin B, et al. A molecular approach to dominance in hypophosphatasia. Hum Genet. 2001;109(1):99–108.

    Article  PubMed  CAS  Google Scholar 

  7. Fraser D. Hypophosphatasia. Am J Med. 1957;22(5):730–46.

    Article  PubMed  CAS  Google Scholar 

  8. Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B. A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet. 2011;75(3):439–45.

    Article  PubMed  Google Scholar 

  9. Weiss MJ, Cole DE, Ray K, Whyte MP, Lafferty MA, Mulivor RA, et al. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci USA. 1988;85(20):7666–9.

    Article  PubMed  CAS  Google Scholar 

  10. Jemmerson R, Low MG. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase. Biochemistry. 1987;26(18):5703–9.

    Article  PubMed  CAS  Google Scholar 

  11. Seetharam B, Tiruppathi C, Alpers DH. Hydrophobic interactions of brush border alkaline phosphatases: the role of phosphatidyl inositol. Arch Biochem Biophys. 1987;253(1):189–98.

    Article  PubMed  CAS  Google Scholar 

  12. Anh DJ, Dimai HP, Hall SL, Farley JR. Skeletal alkaline phosphatase activity is primarily released from human osteoblasts in an insoluble form, and the net release is inhibited by calcium and skeletal growth factors. Calcif Tissue Int. 1998;62(4):332–40.

    Article  PubMed  CAS  Google Scholar 

  13. Anh DJ, Eden A, Farley JR. Quantitation of soluble and skeletal alkaline phosphatase, and insoluble alkaline phosphatase anchor-hydrolase activities in human serum. Clin Chim Acta. 2001;311(2):137–48.

    Article  PubMed  CAS  Google Scholar 

  14. Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, et al. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet. 2010;42(10):827–9.

    Article  PubMed  CAS  Google Scholar 

  15. Girschick HJ, Schneider P, Kruse K, Huppertz HI. Bone metabolism and bone mineral density in childhood hypophosphatasia. Bone. 1999;25(3):361–7.

    Article  PubMed  CAS  Google Scholar 

  16. van den Bos T, Handoko G, Niehof A, Ryan LM, Coburn SP, Whyte MP, et al. Cementum and dentin in hypophosphatasia. J Dent Res. 2005;84(11):1021–5.

    Article  PubMed  Google Scholar 

  17. Girschick HJ, Seyberth HW, Huppertz HI. Treatment of childhood hypophosphatasia with nonsteroidal antiinflammatory drugs. Bone. 1999;25(5):603–7.

    Article  PubMed  CAS  Google Scholar 

  18. Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN, et al. Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5′-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest. 1995;95(4):1440–5.

    Article  PubMed  CAS  Google Scholar 

  19. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Wenkert D, et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med. 2012;366(10):904–13.

    Article  PubMed  CAS  Google Scholar 

  20. Beck C, Morbach H, Richl P, Stenzel M, Girschick HJ. How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases? Rheumatol Int. 2009;29(3):229–38.

    Article  PubMed  CAS  Google Scholar 

  21. Yadav MC, Simao AM, Narisawa S, Huesa C, McKee MD, Farquharson C, et al. Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: a unified model of the mechanisms of initiation of skeletal calcification. J Bone Miner Res. 2011;26(2):286–97.

    Article  PubMed  CAS  Google Scholar 

  22. Mornet E. Hypophosphatasia. Orphanet J Rare Dis. 2007;2:40.

    Article  PubMed  Google Scholar 

  23. Hofmann C, Liese J, Schwarz T, Kunzmann S, Wirbelauer J, Berg F, et al. Compound heterozygosity of two functional null mutations in the ALPL gene associated with deleterious neurological outcome in an infant with hypophosphatasia. Bone. 2013. doi:10.1016/j.bone.2013.02.017.

    PubMed  Google Scholar 

  24. Moore CA, Curry CJ, Henthorn PS, Smith JA, Smith JC, O’Lague P, et al. Mild autosomal dominant hypophosphatasia: in utero presentation in two families. Am J Med Genet. 1999;86(5):410–5.

    Article  PubMed  CAS  Google Scholar 

  25. Pauli RM, Modaff P, Sipes SL, Whyte MP. Mild hypophosphatasia mimicking severe osteogenesis imperfecta in utero: bent but not broken. Am J Med Genet. 1999;86(5):434–8.

    Article  PubMed  CAS  Google Scholar 

  26. Wenkert D, McAlister WH, Coburn SP, Zerega JA, Ryan LM, Ericson KL, et al. Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res. 2011;26(10):2389–98.

    Article  PubMed  CAS  Google Scholar 

  27. Reibel A, Maniere MC, Clauss F, Droz D, Alembik Y, Mornet E, et al. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis. 2009;4:6.

    Article  PubMed  Google Scholar 

  28. Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445–75.

    Article  PubMed  CAS  Google Scholar 

  29. Burnstock G, Krugel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol. 2011;95(2):229–74.

    Article  PubMed  CAS  Google Scholar 

  30. Sowa NA, Taylor-Blake B, Zylka MJ. Ecto-5′-nucleotidase (CD73) inhibits nociception by hydrolyzing AMP to adenosine in nociceptive circuits. J Neurosci. 2010;30(6):2235–44.

    Article  PubMed  CAS  Google Scholar 

  31. Zimmermann H, Zebisch M, Strater N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012;8(3):437–502.

    Article  PubMed  CAS  Google Scholar 

  32. Girschick HJ, Schneider P, Haubitz I, Hiort O, Collmann H, Beer M, et al. Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J Rare Dis. 2006;1:24.

    Article  PubMed  CAS  Google Scholar 

  33. Coburn SP, Mahuren JD, Jain M, Zubovic Y, Wortsman J. Alkaline phosphatase (EC 3.1.3.1) in serum is inhibited by physiological concentrations of inorganic phosphate. J Clin Endocrinol Metab. 1998;83(11):3951–7.

    Article  PubMed  CAS  Google Scholar 

  34. Camacho PM, Painter S, Kadanoff R. Treatment of adult hypophosphatasia with teriparatide. Endocr Pract. 2008;14(2):204–8.

    Article  PubMed  Google Scholar 

  35. Doshi KB, Hamrahian AH, Licata AA. Teriparatide treatment in adult hypophosphatasia in a patient exposed to bisphosphonate: a case report. Clin Cases Miner Bone Metab. 2009;6(3):266–9.

    PubMed  Google Scholar 

  36. Whyte MP, Mumm S, Deal C. Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab. 2007;92(4):1203–8.

    Article  PubMed  CAS  Google Scholar 

  37. Deeb AA, Bruce SN, Morris AA, Cheetham TD. Infantile hypophosphatasia: disappointing results of treatment. Acta Paediatr. 2000;89(6):730–3.

    Article  PubMed  CAS  Google Scholar 

  38. Whyte MP. Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann N Y Acad Sci. 2010;1192:190–200.

    Article  PubMed  CAS  Google Scholar 

  39. Whyte MP, Valdes R Jr, Ryan LM, McAlister WH. Infantile hypophosphatasia: enzyme replacement therapy by intravenous infusion of alkaline phosphatase-rich plasma from patients with Paget bone disease. J Pediatr. 1982;101(3):379–86.

    Article  PubMed  CAS  Google Scholar 

  40. Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH, et al. Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab. 2007;92(8):2923–30.

    Article  PubMed  CAS  Google Scholar 

  41. Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, et al. Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res. 2003;18(4):624–36.

    Article  PubMed  Google Scholar 

  42. Millan JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, et al. Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res. 2008;23(6):777–87.

    Article  PubMed  CAS  Google Scholar 

  43. Collmann H, Mornet E, Gattenlohner S, Beck C, Girschick H. Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst. 2009;25(2):217–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

Conflict of interest

CH received a scholarship from the Interdisciplinary Centre for Clinical Research IZKF Würzburg, Germany, and BM is supported by Bundesministerium für Bildung und Forschung BMBF, Berlin, Germany. JL and CH received a study grant from Alexion Pharma (Cheshire, Connecticut, U.S.) for a phase-two study on Asfotase alpha treatment for severe forms of HPP. F Jakob has received honoraria for lectures and advice from Eli Lilly, Amgen, Novartis, MSD, Nycomed, Servier and Roche; has received unrestricted research grants from Novartis and is involved in clinical studies related to osteoporosis drugs initiated by Eli Lilly, Amgen, Servier and Novartis.

Animal/Human Studies

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, C., Girschick, H.J., Mentrup, B. et al. Clinical Aspects of Hypophosphatasia: An Update. Clinic Rev Bone Miner Metab 11, 60–70 (2013). https://doi.org/10.1007/s12018-013-9139-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-013-9139-0

Keywords

Navigation