Skip to main content

Advertisement

Log in

Osteopenia, Osteoporosis, and Fractures in HIV-Infected Patients: Extent of the Problem

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

In HIV-infected persons, osteoporosis is common and has a multifactorial etiology including traditional risk factors, such as smoking and low body weight, as well as direct effects of HIV infection and antiretroviral therapy. Multiple studies indicate that HIV-infected persons are at increased risk of low bone mass as compared to the general population. Emerging data suggest that the increased prevalence of reduced bone mass in HIV infection predisposes patients to an increased risk of fracture. This review discusses the epidemiology of low bone mass and fracture in HIV-infected persons, addresses the multiple causes of reduced bone mineral density in HIV infection, and offers recommendations on screening HIV-infected persons for bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Consensus development conference. Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94(6):646–50.

    Article  Google Scholar 

  2. European Foundation for Osteoporosis and Bone Diseases and the National Osteoporosis Foundation of USA. Who are candidates for prevention and treatment for osteoporosis? Osteoporos Int. 1997;7(1):1–6.

    Google Scholar 

  3. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33. doi:10.1007/s00198-006-0172-4.

    Article  PubMed  CAS  Google Scholar 

  4. Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA. 2004;292(2):191–201. doi:10.1001/jama.292.2.191.

    Article  PubMed  CAS  Google Scholar 

  5. Tebas P, Powderly WG, Claxton S, Marin D, Tantisiriwat W, Teitelbaum SL, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS. 2000;14(4):F63–7.

    Article  PubMed  CAS  Google Scholar 

  6. Tebas P, Umbleja T, Dube M, Parker R, Mulligan K, Roubenoff R, Grinspoon S, ACTG. Abstract. Initiation of ART is associated with bone loss independent of the specific ART regimen: Results of ACTG A5005s. 14th conference on retroviruses and opportunistic infections; Los Angeles 2007.

  7. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–74. doi:10.1097/QAD.0b013e32801022eb.

    Article  PubMed  Google Scholar 

  8. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–129.

    Google Scholar 

  9. Cazanave C, Dupon M, Lavignolle-Aurillac V, Barthe N, Lawson-Ayayi S, Mehsen N, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS. 2008;22(3):395–402. doi:10.1097/QAD.0b013e3282f423dd.

    Article  PubMed  Google Scholar 

  10. Fernandez-Rivera J, Garcia R, Lozano F, Macias J, Garcia–Garcia JA, Mira JA, et al. Relationship between low bone mineral density and highly active antiretroviral therapy including protease inhibitors in HIV-infected patients. HIV Clin Trials. 2003;4(5):337–46.

    Article  PubMed  CAS  Google Scholar 

  11. Amiel C, Ostertag A, Slama L, Baudoin C, N’Guyen T, Lajeunie E, et al. BMD is reduced in HIV-infected men irrespective of treatment. J Bone Miner Res. 2004;19(3):402–9. doi:10.1359/JBMR.0301246.

    Article  PubMed  CAS  Google Scholar 

  12. Bruera D, Luna N, David DO, Bergoglio LM, Zamudio J. Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS. 2003;17(13):1917–23. doi:10.1097/01.aids.0000076322.42412.6f.

    Article  PubMed  Google Scholar 

  13. Dolan SE, Huang JS, Killilea KM, Sullivan MP, Aliabadi N, Grinspoon S. Reduced bone density in HIV-infected women. AIDS. 2004;18(3):475–83.

    Article  PubMed  Google Scholar 

  14. Teichmann J, Stephan E, Lange U, Discher T, Friese G, Lohmeyer J, et al. Osteopenia in HIV-infected women prior to highly active antiretroviral therapy. J Infect. 2003;46(4):221–7.

    Article  PubMed  CAS  Google Scholar 

  15. Vescini F, Borderi M, Buffa A, Sinicropi G, Tampellini L, Chiodo F, et al. Bone mass in HIV-infected patients: focus on the role of therapy and sex. J Acquir Immune Defic Syndr. 2003;33(3):405–7.

    Article  PubMed  Google Scholar 

  16. Carr A, Miller J, Eisman JA, Cooper DA. Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS. 2001;15(6):703–9.

    Article  PubMed  CAS  Google Scholar 

  17. Calmy A, Fux CA, Norris R, Vallier N, Delhumeau C, Samaras K, et al. Low bone mineral density, renal dysfunction, and fracture risk in HIV infection: a cross-sectional study. J Infect Dis. 2009;200(11):1746–54. doi:10.1086/644785.

    Article  PubMed  CAS  Google Scholar 

  18. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Lo Y, Klein RS. Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS. 2007;21(5):617–23. doi:10.1097/QAD.0b013e3280148c05.

    Article  PubMed  Google Scholar 

  19. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Santoro N, Schoenbaum EE. HIV infection and bone mineral density in middle-aged women. Clin Infect Dis. 2006;42(7):1014–20. doi:10.1086/501015.

    Article  PubMed  CAS  Google Scholar 

  20. Prior J, Burdge D, Maan E, Milner R, Hankins C, Klein M, et al. Fragility fractures and bone mineral density in HIV positive women: a case-control population-based study. Osteoporos Int. 2007;18(10):1345–53. doi:10.1007/s00198-007-0428-7.

    Article  PubMed  CAS  Google Scholar 

  21. Yin M, Dobkin J, Brudney K, Becker C, Zadel JL, Manandhar M, et al. Bone mass and mineral metabolism in HIV+ postmenopausal women. Osteoporos Int. 2005;16(11):1345–52. doi:10.1007/s00198-005-1845-0.

    Article  PubMed  Google Scholar 

  22. Yin MT, McMahon DJ, Ferris DC, Zhang CA, Shu A, Staron R, et al. Low bone mass and high bone turnover in postmenopausal human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2010;95(2):620–9. doi:10.1210/jc.2009-0708.

    Article  PubMed  CAS  Google Scholar 

  23. Yin MT, Lu D, Cremers S, Tien PC, Cohen MH, Shi Q, et al. Short-term bone loss in HIV-infected premenopausal women. J Acquir Immune Defic Syndr. 2010;53(2):202–8. doi:10.1097/QAI.0b013e3181bf6471.

    Article  PubMed  Google Scholar 

  24. Jones S, Restrepo D, Kasowitz A, Korenstein D, Wallenstein S, Schneider A, et al. Risk factors for decreased bone density and effects of HIV on bone in the elderly. Osteoporos Int. 2008;19(7):913–8. doi:10.1007/s00198-007-0524-8.

    Article  PubMed  CAS  Google Scholar 

  25. Sharma A, Flom PL, Weedon J, Klein RS. Prospective study of bone mineral density changes in aging men with or at risk for HIV infection. AIDS. 2010;24(15):2337–45. doi:10.1097/QAD.0b013e32833d7da7.

    PubMed  Google Scholar 

  26. Sharma A, Cohen HW, Freeman R, Santoro N, Schoenbaum EE. Prospective evaluation of bone mineral density among middle-aged HIV-infected and uninfected women: Association between methadone use and bone loss. Maturitas. 2011;70(3):295–301. doi:10.1016/j.maturitas.2011.08.003..

    Article  PubMed  Google Scholar 

  27. McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, Huang JS, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51(8):937–46. doi:10.1086/656412.

    Article  PubMed  Google Scholar 

  28. Collin F, Duval X, Le Moing V, Piroth L, Al Kaied F, Massip P. Ten-year incidence and risk factors of bone fractures in a cohort of treated HIV1-infected adults. AIDS. 2009;23(8):1021–4. doi:10.1097/QAD.0b013e3283292195.

    Article  PubMed  Google Scholar 

  29. Dao C, Young B, Buchacz K, Baker R, Brooks J, the HIV Outpatient Study Investigators. Higher and increasing rates of fracture among HIV-infected persons in the HIV outpatient study compared to the General US Population, 1994–1998. Abstracts of the 17th conference on retroviruses and opportunistic infections; San Francisco, CA; 2010.

  30. Volk J, Localio R, Newcomb C, Yang Y-X, Hennessy S, Kostman J, et al. Risk of fractures associated with HIV/hepatitis C Coinfection. Abstracts of the 18th conference on retroviruses and opportunistic infections; Boston, MA; 2011.

  31. Yin M, Kendall M, Wu X, Tassiopoulos K, Huang J, Shane E, et al. Incidence and determinants of fracture in HIV+ individuals on ART in the ALLRT Study. Abstracts of the 18th Conference on retroviruses and opportunistic infections; Boston, MA; 2011.

  32. Hansen AB, Gerstoft J, Kronborg G, Larsen CS, Pedersen C, Pedersen G, et al. Incidence of low- and high-energy fractures in persons with and without HIV-infection: a Danish population-based cohort study. AIDS. 2011;. doi:10.1097/QAD.0b013e32834ed8a7.

    Google Scholar 

  33. Yin MT, Shi Q, Hoover DR, Anastos K, Sharma A, Young M, et al. Fracture incidence in HIV-infected women: results from the Women’s interagency HIV study. AIDS. 2010;24(17):2679–86. doi:10.1097/QAD.0b013e32833f6294.

    Article  PubMed  Google Scholar 

  34. Bolland MJ, Grey AB, Gamble GD, Reid IR. CLINICAL review # : low body weight mediates the relationship between HIV infection and low bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2007;92(12):4522–8. doi:10.1210/jc.2007-1660.

    Article  PubMed  CAS  Google Scholar 

  35. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2004;287(4):C834–43. doi:10.1152/ajpcell.00579.2003.

    Article  PubMed  CAS  Google Scholar 

  36. Yarasheski KE, Scherzer R, Kotler DP, Dobs AS, Tien PC, Lewis CE, et al. Age-related skeletal muscle decline is similar in HIV-infected and uninfected individuals. J Gerontol A Biol Sci Med Sci. 2011;66(3):332–40. doi:10.1093/gerona/glq228.

    Article  PubMed  Google Scholar 

  37. Knoke JD, Barrett-Connor E. Weight loss: a determinant of hip bone loss in older men and women. The Rancho Bernardo Study. Am J Epidemiol. 2003;158(12):1132–8.

    Article  PubMed  Google Scholar 

  38. Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int. 2002;13(2):105–12.

    Article  PubMed  CAS  Google Scholar 

  39. Bolland MJ, Grey AB, Horne AM, Briggs SE, Thomas MG, Ellis-Pegler RB, et al. Bone mineral density remains stable in HAART-treated HIV-infected men over 2 years. Clin Endocrinol (Oxf). 2007;67(2):270–5. doi:10.1111/j.1365-2265.2007.02875.x.

    Article  CAS  Google Scholar 

  40. Mondy K, Yarasheski K, Powderly WG, Whyte M, Claxton S, DeMarco D, et al. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals. Clin Infect Dis. 2003;36(4):482–90. doi:10.1086/367569.

    Article  PubMed  Google Scholar 

  41. Dolan SE, Kanter JR, Grinspoon S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 2006;91(8):2938–45. doi:10.1210/jc.2006-0127.

    Article  PubMed  CAS  Google Scholar 

  42. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. 2009;23(7):817–24. doi:10.1097/QAD.0b013e328328f789.

    Article  PubMed  Google Scholar 

  43. van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS. 2009;23(11):1367–76. doi:10.1097/QAD.0b013e32832c4947.

    Article  PubMed  Google Scholar 

  44. Yin MT, Zhang CA, McMahon DJ, Ferris DC, Irani D, Colon I, et al. Higher rates of bone loss in postmenopausal HIV-infected women: a longitudinal study. J Clin Endocrinol Metab. 2011;. doi:10.1210/jc.2011-2197.

    Google Scholar 

  45. Bolland MJ, Wang TK, Grey A, Gamble GD, Reid IR. Stable bone density in HAART-treated individuals with HIV: a meta-analysis. J Clin Endocrinol Metab. 2011;96(9):2721–31. doi:10.1210/jc.2011-0591.

    Article  PubMed  CAS  Google Scholar 

  46. Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51(5):554–61. doi:10.1097/QAI.0b013e3181adce44.

    Article  PubMed  CAS  Google Scholar 

  47. Reid DM, Adami S, Devogelaer JP, Chines AA. Risedronate increases bone density and reduces vertebral fracture risk within 1 years in men on corticosteroid therapy. Calcif Tissue Int. 2001;69(4):242–7.

    Article  PubMed  CAS  Google Scholar 

  48. Aukrust P, Haug CJ, Ueland T, Lien E, Muller F, Espevik T, et al. Decreased bone formative and enhanced resorptive markers in human immunodeficiency virus infection: indication of normalization of the bone-remodeling process during highly active antiretroviral therapy. J Clin Endocrinol Metab. 1999;84(1):145–50.

    Article  PubMed  CAS  Google Scholar 

  49. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, Van Wijngaerden E, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-weeks results from the ASSERT study. Clin Infect Dis. 2010;51(8):963–72. doi:10.1086/656417.

    Article  PubMed  Google Scholar 

  50. Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93(9):3499–504. doi:10.1210/jc.2008-0828.

    Article  PubMed  CAS  Google Scholar 

  51. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B, et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS ONE. 2011;6(2):e17217. doi:10.1371/journal.pone.0017217.

    Article  PubMed  CAS  Google Scholar 

  52. Young B, Dao CN, Buchacz K, Baker R, Brooks JT. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000–2006. Clin Infect Dis. 2011;52(8):1061–8. doi:10.1093/cid/ciq242.

    Article  PubMed  Google Scholar 

  53. Hasse B, Ledergerber B, Furrer H, Battegay M, Hirschel B, Cavassini M, et al. Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clin Infect Dis. 2011;. doi:10.1093/cid/cir626.

    PubMed  Google Scholar 

  54. Yong MK, Elliott JH, Woolley IJ, Hoy JF. Low CD4 count is associated with an increased risk of fragility fracture in HIV-infected patients. J Acquir Immune Defic Syndr. 2011;57(3):205–10. doi:10.1097/QAI.0b013e31821ecf4c.

    Article  PubMed  Google Scholar 

  55. Fakruddin JM, Laurence J. HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor kappa B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-gamma/RANKL cross-talk. J Biol Chem. 2003;278(48):48251–8. doi:10.1074/jbc.M304676200.

    Article  PubMed  CAS  Google Scholar 

  56. Fakruddin JM, Laurence J. HIV-1 Vpr enhances production of receptor of activated NF-kappaB ligand (RANKL) via potentiation of glucocorticoid receptor activity. Arch Virol. 2005;150(1):67–78. doi:10.1007/s00705-004-0395-7.

    Article  PubMed  CAS  Google Scholar 

  57. Cotter EJ, Malizia AP, Chew N, Powderly WG, Doran PP. HIV proteins regulate bone marker secretion and transcription factor activity in cultured human osteoblasts with consequent potential implications for osteoblast function and development. AIDS Res Hum Retroviruses. 2007;23(12):1521–30. doi:10.1089/aid.2007.0112.

    Article  PubMed  CAS  Google Scholar 

  58. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481–8. doi:10.1172/JCI11176.

    Article  PubMed  CAS  Google Scholar 

  59. Hashizume M, Hayakawa N, Mihara M. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-alpha and IL-17. Rheumatology (Oxf). 2008;47(11):1635–40. doi:10.1093/rheumatology/ken363.

    Article  CAS  Google Scholar 

  60. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297–303.

    PubMed  CAS  Google Scholar 

  61. Gibellini D, Borderi M, De Crignis E, Cicola R, Vescini F, Caudarella R, et al. RANKL/OPG/TRAIL plasma levels and bone mass loss evaluation in antiretroviral naive HIV-1-positive men. J Med Virol. 2007;79(10):1446–54. doi:10.1002/jmv.20938.

    Article  PubMed  CAS  Google Scholar 

  62. Grijsen ML, Vrouenraets SM, Steingrover R, Lips P, Reiss P, Wit FW, et al. High prevalence of reduced bone mineral density in primary HIV-1-infected men. AIDS. 2010;24(14):2233–8. doi:10.1097/QAD.0b013e32833c93fe.

    Article  PubMed  Google Scholar 

  63. Jain RG, Lenhard JM. Select HIV protease inhibitors alter bone and fat metabolism ex vivo. J Biol Chem. 2002;277(22):19247–50. doi:10.1074/jbc.C200069200.

    Article  PubMed  CAS  Google Scholar 

  64. Wang MW, Wei S, Faccio R, Takeshita S, Tebas P, Powderly WG, et al. The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling. J Clin Invest. 2004;114(2):206–13. doi:10.1172/JCI15797.

    PubMed  CAS  Google Scholar 

  65. Bedimo R, Zhang, S, Dreschler, H, Tebas, P, Maalouf, N, editor. Risk of osteoporotic fracture associated with cumulative exposure to tenofovir and other antiretrovial agents. 18th conference on retroviruses and opportunistic infections. Boston, MA; 2011.

  66. Pan G, Yang Z, Ballinger SW, McDonald JM. Pathogenesis of osteopenia/osteoporosis induced by highly active anti-retroviral therapy for AIDS. Ann N Y Acad Sci. 2006;1068:297–308. doi:10.1196/annals.1346.057.

    Article  PubMed  CAS  Google Scholar 

  67. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224 s, a substudy of ACTG A5202. J Infect Dis. 2011;203(12):1791–801. doi:10.1093/infdis/jir188.

    Article  PubMed  CAS  Google Scholar 

  68. Liu A, Vittinghoff, E, Irby, R, Mulligan, K, Sellmayer, D, Mayer, K, Thompson, M, Gvetadze, R, Grohskopf, L, Buchbinder, S. BMD Loss in HIV negative men participating in a TDF PrEP Clinical trial in San Francisco. Conference on retroviruses and opportunistic infections; Boston, MA; 2011.

  69. Verhelst D, Monge M, Meynard JL, Fouqueray B, Mougenot B, Girard PM, et al. Fanconi syndrome and renal failure induced by tenofovir: a first case report. Am J Kidney Dis. 2002;40(6):1331–3. doi:10.1053/ajkd.2002.36924.

    Article  PubMed  Google Scholar 

  70. Karras A, Lafaurie M, Furco A, Bourgarit A, Droz D, Sereni D, et al. Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, Fanconi syndrome, and nephrogenic diabetes insipidus. Clin Infect Dis. 2003;36(8):1070–3. doi:10.1086/368314.

    Article  PubMed  Google Scholar 

  71. Childs KE, Fishman SL, Constable C, Gutierrez JA, Wyatt CM, Dieterich DT, et al. Short communication: inadequate vitamin D exacerbates parathyroid hormone elevations in tenofovir users. AIDS Res Hum Retroviruses. 2010;26(8):855–9. doi:10.1089/aid.2009.0308.

    Article  PubMed  CAS  Google Scholar 

  72. Landriscina M, Altamura SA, Roca L, Gigante M, Piscazzi A, Cavalcanti E, et al. Reverse transcriptase inhibitors induce cell differentiation and enhance the immunogenic phenotype in human renal clear-cell carcinoma. Int J Cancer. 2008;122(12):2842–50. doi:10.1002/ijc.23197.

    Article  PubMed  CAS  Google Scholar 

  73. Brown TT, McComsey GA. Association between initiation of antiretroviral therapy with efavirenz and decreases in 25-hydroxyvitamin D. Antivir Ther. 2010;15(3):425–9. doi:10.3851/IMP1502.

    Article  PubMed  CAS  Google Scholar 

  74. Welz T, Childs K, Ibrahim F, Poulton M, Taylor CB, Moniz CF, et al. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. AIDS. 2010;24(12):1923–8. doi:10.1097/QAD.0b013e32833c3281.

    Article  PubMed  CAS  Google Scholar 

  75. Change in Vitamin D Levels Smaller and Risk of Development of Severe Vitamin D Deficiency Lower among HIV-1-infected, Treatment-naive adults receiving TMC278 compared with EFV: 48-week results from the phase III ECHO Trial. In: Wohl DA DM, Orkin C, editor. 18th conference on retroviruses and opportunistic infections; Boston, MA; 2011.

  76. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    Article  PubMed  CAS  Google Scholar 

  77. Ensrud KE, Ewing SK, Taylor BC, Fink HA, Stone KL, Cauley JA, et al. Frailty and risk of falls, fracture, and mortality in older women: the study of osteoporotic fractures. J Gerontol A Biol Sci Med Sci. 2007;62(7):744–51.

    Article  PubMed  Google Scholar 

  78. Desquilbet L, Jacobson LP, Fried LP, Phair JP, Jamieson BD, Holloway M, et al. HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci. 2007;62(11):1279–86.

    Article  PubMed  Google Scholar 

  79. Brown TT, Ruppe MD, Kassner R, Kumar P, Kehoe T, Dobs AS, et al. Reduced bone mineral density in human immunodeficiency virus-infected patients and its association with increased central adiposity and postload hyperglycemia. J Clin Endocrinol Metab. 2004;89(3):1200–6.

    Article  PubMed  CAS  Google Scholar 

  80. Huang JS, Rietschel P, Hadigan CM, Rosenthal DI, Grinspoon S. Increased abdominal visceral fat is associated with reduced bone density in HIV-infected men with lipodystrophy. AIDS. 2001;15(8):975–82.

    Article  PubMed  CAS  Google Scholar 

  81. Rosenthall L, Falutz J. Bone mineral and soft-tissue changes in AIDS-associated lipoatrophy. J Bone Miner Metab. 2005;23(1):53–7. doi:10.1007/s00774-004-0541-z.

    Article  PubMed  Google Scholar 

  82. Karkkainen M, Rikkonen T, Kroger H, Sirola J, Tuppurainen M, Salovaara K, et al. Association between functional capacity tests and fractures: an eight-year prospective population-based cohort study. Osteoporos Int. 2008;19(8):1203–10. doi:10.1007/s00198-008-0561-y.

    Article  PubMed  CAS  Google Scholar 

  83. Gazzola L, Comi L, Savoldi A, Tagliabue L, Del Sole A, Pietrogrande L et al. Use of the FRAX equation as first-line screening of bone metabolism alteration in the HIV-infected population. J Infect Dis. 2010;202(2):330–1; author reply 1–2. doi:10.1086/653584.

    Google Scholar 

  84. Clinician’s Guide to Prevention and Treatment of Osteoporosis. In: Foundation NO, editor. DC: National Osteoporosis Foundation; Washington; 2010.

    Google Scholar 

  85. EACS Executive Committee Members. European AIDS Clinical Society Guidelines. Paris, France: European AIDS Clinical Society; 2011.

  86. Dao CN, Patel P, Overton ET, Rhame F, Pals SL, Johnson C, et al. Low vitamin D among HIV-infected adults: prevalence of and risk factors for low vitamin D Levels in a cohort of HIV-infected adults and comparison to prevalence among adults in the US general population. Clin Infect Dis. 2011;52(3):396–405. doi:10.1093/cid/ciq158.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH (NIAID) 1R01AI093520-01A1 (TTB). All authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, V.W., Brown, T.T. Osteopenia, Osteoporosis, and Fractures in HIV-Infected Patients: Extent of the Problem. Clinic Rev Bone Miner Metab 10, 246–256 (2012). https://doi.org/10.1007/s12018-012-9132-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-012-9132-z

Keywords

Navigation