Skip to main content
Log in

Acid–Base and Electrolyte Changes Drive Early Pathology in Ischemic Stroke

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Emergent large vessel occlusion accounts for 20–40% of ischemic strokes and is the most debilitating form of stroke. Some of the earliest changes in response to ischemic stroke occur in blood gases and electrolytes. These biochemical changes occur within minutes after occlusion in experimental models of stroke and can be utilized to predict stroke outcomes. The majority of ELVO stroke patients are middle-aged to elderly and are of both sexes, revealing that there is an age and sex mismatch between ischemic stroke patients and animal models, since most experimental studies use young male rats. Rethinking of the animal models should be considered, especially in encouraging the use of aged male and female rats with comorbidities to more closely mirror human populations. Mechanical thrombectomy provides a unique opportunity for researchers to further this work by expanding the collection and analysis of blood samples that are adjacent to the thrombus. To understand the complexity of stroke, researchers can analyze these tissues for different molecular targets that occur in response to ischemic stroke. This information may aid in the reduction of symptom burden for individuals diagnosed with ischemic stroke. Investigators should also focus on data from ischemic stroke patients and attempt to discover target molecules and then in animal models to establish mechanism, which will aid in the development of new stroke therapies. This review discusses the translation of these studies to the human patient to develop the capability to predict stroke outcomes. Future studies are needed to identify molecular targets to predict the risk of worsened long-term outcomes and/or increased risk for mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ak, A., Ogun, C. O., Bayir, A., et al. (2006). Prediction of arterial blood gas values from venous blood gas values in patients with acute exacerbation of chronic obstructive pulmonary disease. The Tohoku Journal of Experimental Medicine,210(4), 285–290.

    CAS  PubMed  Google Scholar 

  • Albers, G. W., Marks, M. P., Kemp, S., et al. (2018). Thrombectomy for stroke at 6–16 h with selection by perfusion imaging. New England Journal of Medicine,378(8), 708–718.

    Google Scholar 

  • Awasthi, S., Rani, R., & Malviya, D. (2013). Peripheral venous blood gas analysis: An alternative to arterial blood gas analysis for initial assessment and resuscitation in emergency and intensive care unit patients. Anesthesia, Essays and Researches,7(3), 355.

    PubMed  PubMed Central  Google Scholar 

  • Back, T., Hoehn, M., Mies, G., et al. (2000). Penumbral tissue alkalosis in focal cerebral ischemia: relationship to energy metabolism, blood flow, and steady potential. Annals of Neurology,47(4), 485–492.

    CAS  PubMed  Google Scholar 

  • Bellocq, A., Suberville, S., Philippe, C., et al. (1998). Low environmental pH is responsible for the induction of nitric-oxide synthase in macrophages. Evidence for involvement of nuclear factor-kappaB activation. Journal of Biological Chemistry,273(9), 5086–5092.

    CAS  Google Scholar 

  • Benjamin, E. J., Muntner, P., Alonso, A., et al. (2019). Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation,139(10), e56–e528.

    PubMed  Google Scholar 

  • Berkhemer, O. A., Fransen, P. S., Beumer, D., et al. (2015). A randomized trial of intraarterial treatment for acute ischemic stroke. The New England Journal of Medicine,372(1), 11–20. https://doi.org/10.1056/NEJMoa1411587.

    Article  CAS  PubMed  Google Scholar 

  • Borgens, R. B., & Liu-Snyder, P. (2012). Understanding secondary injury. The Quarterly Review of Biology,87(2), 89–127.

    PubMed  Google Scholar 

  • Buck, B. H., Liebeskind, D. S., Saver, J. L., et al. (2007). Association of higher serum calcium levels with smaller infarct volumes in acute ischemic stroke. Archives of Neurology,64(9), 1287–1291.

    PubMed  Google Scholar 

  • Campbell, B. C., Donnan, G. A., Lees, K. R., et al. (2015). Endovascular stent thrombectomy: The new standard of care for large vessel ischaemic stroke. The Lancet Neurology,14(8), 846–854.

    PubMed  Google Scholar 

  • Casey, J. R., Grinstein, S., & Orlowski, J. (2010). Sensors and regulators of intracellular pH. Nature Reviews Molecular Cell Biology,11(1), 50–61.

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention. (2012). CDC. Prevalence of stroke—United States, 2006–2010. Morbidity and Mortality Weekly Report,61(20), 379.

    Google Scholar 

  • Christensen, H., & Boysen, G. (2002). Blood glucose increases early after stroke onset: a study on serial measurements of blood glucose in acute stroke. European Journal of Neurology,9(3), 297–301.

    CAS  PubMed  Google Scholar 

  • Doyle, K. P., Simon, R. P., & Stenzel-Poore, M. P. (2008). Mechanisms of ischemic brain damage. Neuropharmacology,55(3), 310–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeilivand, M., Khatony, A., Moradi, G., et al. (2017). Agreement and correlation between arterial and central venous blood gas following coronary artery bypass graft surgery. Journal of Clinical and Diagnostic Research,11(3), OC43.

    PubMed  PubMed Central  Google Scholar 

  • Farahmand, F., Choobi Anzali, B., Heshmat, R., et al. (2013). Serum sodium and potassium levels in cerebro-vascular accident patients. The Malaysian Journal of Medical Sciences,20(3), 39–43.

    PubMed  PubMed Central  Google Scholar 

  • Fiorella, D. J., Fargen, K. M., Mocco, J., et al. (2015). Thrombectomy for acute ischemic stroke: an evidence-based treatment. Journal of Neurointerventional Surgery,7(5), 314–315.

    PubMed  Google Scholar 

  • Flores, A., Sargento-Freitas, J., Pagola, J., et al. (2013). Arterial blood gas analysis of samples directly obtained beyond cerebral arterial occlusion during endovascular procedures predicts clinical outcome. Journal of Neuroimaging,23(2), 180–184. https://doi.org/10.1111/j.1552-6569.2011.00667.x.

    Article  PubMed  Google Scholar 

  • Fofi, L., Dall’armi, V., Durastanti, L., et al. (2012). An observational study on electrolyte disorders in the acute phase of ischemic stroke and their prognostic value. Journal of Clinical Neuroscience,19(4), 513–516.

    CAS  PubMed  Google Scholar 

  • Fraser, J. F., Collier, L. A., Gorman, A. A., et al. (2019). The blood and clot thrombectomy registry and collaboration (BACTRAC) protocol: Novel method for evaluating human stroke. Jouranl of Neurointerventional Surgery,11(3), 265–270.

    Google Scholar 

  • Go, A. S., Mozaffarian, D., Roger, V. L., et al. (2014). Executive summary: Heart disease and stroke statistics–2014 update: A report from the American Heart Association. Circulation,129(3), 399–410.

    PubMed  Google Scholar 

  • Goyal, M., Menon, B. K., van Zwam, W. H., et al. (2016). Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet,387(10029), 1723–1731. https://doi.org/10.1016/S0140-6736(16)00163-X.

    Article  PubMed  Google Scholar 

  • Grotta, J., Ackerman, R., Correia, J., et al. (1982). Whole blood viscosity parameters and cerebral blood flow. Stroke,13(3), 296–301.

    CAS  PubMed  Google Scholar 

  • Guo, Y., Yan, S., Zhang, S., et al. (2015). Lower serum calcium level is associated with hemorrhagic transformation after thrombolysis. Stroke,46(5), 1359–1361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guven, H., Cilliler, A. E., Koker, C., et al. (2011). Association of serum calcium levels with clinical severity of acute ischemic stroke. Acta Neurologica Belgica,111(1), 45.

    PubMed  Google Scholar 

  • Haas, R., Smith, J., Rocher-Ros, V., et al. (2015). Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biology,13(7), e1002202.

    PubMed  PubMed Central  Google Scholar 

  • Hamm, L. L., Nakhoul, N., & Hering-Smith, K. S. (2015). Acid-base homeostasis. Clinical Journal of American Society of Nephrology,10(12), 2232–2242.

    CAS  Google Scholar 

  • Ishfaq, M., Ullah, F., Akbar, S., et al. (2017). Correlation of serum calcium with severity of acute ischaemic stroke. J Pak Med Assoc,67(1), 20.

    PubMed  Google Scholar 

  • Kelly, A. M., McAlpine, R., & Kyle, E. (2001). Venous pH can safely replace arterial pH in the initial evaluation of patients in the emergency department. Emergency Medicine Journal,18(5), 340–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, Z. H., Samadi, S., Sadeghi, M., et al. (2010). Prospective study to determine possible correlation between arterial and venous blood gas values. Acta Anaesthesiologica Taiwanica,48(3), 136–139.

    PubMed  Google Scholar 

  • Kim, Y. J., Lee, Y. J., Ryoo, S. M., et al. (2016). Role of blood gas analysis during cardiopulmonary resuscitation in out-of-hospital cardiac arrest patients. Medicine,95(25), e3960.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristian, T., & Siesjo, B. K. (1997). Changes in ionic fluxes during cerebral ischaemia. International Review of Neurobiology,40, 27–45.

    CAS  PubMed  Google Scholar 

  • Leslie-Mazwi, T., Chandra, R. V., Baxter, B. W., et al. (2018). ELVO: An operational definition. Journal of Neurointerventional Surgery,10(6), 507–509.

    PubMed  Google Scholar 

  • Maekawa, K., Shibata, M., Nakajima, H., et al. (2018). Erythrocyte-rich thrombus is associated with reduced number of maneuvers and procedure time in patients with acute ischemic stroke undergoing mechanical thrombectomy. Cerebrovascular Diseases Extra,8(1), 39–49.

    PubMed  PubMed Central  Google Scholar 

  • Martha, S. R., Collier, L. A., Davis, S. M., et al. (2019). Early acid/base and electrolyte changes in permanent middle cerebral artery occlusion: Aged male and female rats. Journal of Neuroscience Research. https://doi.org/10.1002/jnr.24422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martha, S. R., Collier, L. A., Davis, S. M., et al. (2018). Translational evaluation of acid/base and electrolyte alterations in rodent model of focal ischemia. Journal of Stroke and Cerebrovascular Diseases,27(10), 2746–2754.

    PubMed  PubMed Central  Google Scholar 

  • Mifsud, G., Zammit, C., Muscat, R., et al. (2014). Oligodendrocyte pathophysiology and treatment strategies in cerebral ischemia. CNS Neuroscience & Therapeutics,20(7), 603–612.

    CAS  Google Scholar 

  • Mokri, B. (2001). The monro-kellie hypothesis: Applications in CSF volume depletion. Neurology,56(12), 1746–1748.

    CAS  PubMed  Google Scholar 

  • Nogueira, R. G., Jadhav, A. P., Haussen, D. C., et al. (2018). Thrombectomy 6–24 h after stroke with a mismatch between deficit and infarct. New England Journal of Medicine,378(1), 11–21. https://doi.org/10.1056/NEJMoa1706442.

    Article  Google Scholar 

  • Ovbiagele, B., Liebeskind, D. S., Starkman, S., et al. (2006). Are elevated admission calcium levels associated with better outcomes after ischemic stroke? Neurology,67(1), 170–173.

    CAS  PubMed  Google Scholar 

  • Ovbiagele, B., Starkman, S., Teal, P., et al. (2008). Serum calcium as prognosticator in ischemic stroke. Stroke,39(8), 2231–2236.

    CAS  PubMed  Google Scholar 

  • Powers, W. J., Rabinstein, A. A., Ackerson, T., et al. (2018). Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke,49(3), e46–e99.

    PubMed  Google Scholar 

  • Prochazka, V., Jonszta, T., Czerny, D., et al. (2018). The role of von willebrand factor, ADAMTS13, and cerebral artery thrombus composition in patient outcome following mechanical thrombectomy for acute ischemic stroke. Medical Science Monitor,24, 3929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queliconi, B. B., Marazzi, T. B., Vaz, S. M., et al. (2013). Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion. Free Radical Biology and Medicine,55, 46–53.

    CAS  PubMed  Google Scholar 

  • Rodrigues, B., Staff, I., Fortunato, G., et al. (2014). Hyponatremia in the prognosis of acute ischemic stroke. Journal of Stroke Cerebrovascular Diseases,23(5), 850–854.

    PubMed  Google Scholar 

  • Schwarzkopf, T. M., Horn, T., Lang, D., et al. (2013). Blood gases and energy metabolites in mouse blood before and after cerebral ischemia: The effects of anesthetics. Experimental Biology and Medicine,238(1), 84–89.

    CAS  PubMed  Google Scholar 

  • Simard, J. M., Kent, T. A., Chen, M., et al. (2007). Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. The Lancet Neurology,6(3), 258–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soiza, R. L., Cumming, K., Clark, A. B., et al. (2015). Hyponatremia predicts mortality after stroke. International Journal of Stroke,10, 50–55.

    PubMed  Google Scholar 

  • Son, K. H., Lim, C. H., Song, E. J., et al. (2010). Inter-species hemorheologic differences in arterial and venous blood. Clinical Hemorheology and Microcirculation,44(1), 27–33.

    PubMed  Google Scholar 

  • Sporns, P. B., Hanning, U., Schwindt, W., et al. (2017). Ischemic stroke: What does the histological composition tell us about the origin of the thrombus? Stroke,48(8), 2206–2210.

    PubMed  Google Scholar 

  • Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995;333(24):1581-7. https://doi.org/10.1056/nejm199512143332401 [published Online First: 1995/12/14]

  • Tobin, M. K., Bonds, J. A., Minshall, R. D., et al. (2014). Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. Journal of Cerebral Blood Flow & Metabolism,34(10), 1573–1584.

    Google Scholar 

  • Traystman, R. J., Kirsch, J. R., & Koehler, R. C. (1991). Oxygen radical mechanisms of brain injury following ischemia and reperfusion. Journal of Applied Physiology,71(4), 1185–1195.

    CAS  PubMed  Google Scholar 

  • Treger, R., Pirouz, S., Kamangar, N., et al. (2010). Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clinical Journal of American Society of Nephrology,5(3), 390–394.

    CAS  Google Scholar 

  • Yan, S. F., Tritto, I., Pinsky, D., et al. (1995). Induction of interleukin 6 (IL-6) by hypoxia in vascular cells. Central role of the binding site for nuclear factor-IL-6. Journal of Biological Chemistry,270(19), 11463–11471.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tom Dolan for the graphics in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Pennypacker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. (IACUC 2016-2356).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martha, S.R., Fraser, J.F. & Pennypacker, K.R. Acid–Base and Electrolyte Changes Drive Early Pathology in Ischemic Stroke. Neuromol Med 21, 540–545 (2019). https://doi.org/10.1007/s12017-019-08555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-019-08555-5

Keywords

Navigation