Skip to main content

Advertisement

Log in

VEGF-Mediated Cognitive and Synaptic Improvement in Chronic Cerebral Hypoperfusion Rats Involves Autophagy Process

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Chronic cerebral hypoperfusion (CCH) is associated with various neurodegenerative diseases characterized by cognitive impairment. Dozens of studies including ours have indicated that exogenous administration of vascular endothelial growth factor (VEGF) could exert effective cognitive protection during ischemia. Nevertheless, the underlying mechanism has not been well clarified. To address this issue, we explored the synaptic mechanisms in vivo since hippocampal synaptic function is essential to the learning and memory process. Besides, the role of autophagy in cognitive dysfunction under conditions of CCH is still controversial. And abnormal autophagy could threaten normal neurotransmission at synapse where a large amount of protein synthesis and degradation take place. Hence, we further examined whether the altered synaptic function was associated with autophagy. The results showed that CCH impaired spatial cognition as evidenced in Morris water maze. We further found that VEGF mitigated impaired hippocampal synaptic function including basal synaptic transmission, paired-pulse facilitation, short-term, long-term plasticity, depotentiation, and the level of synaptic proteins as assessed by electrophysiological examination and western blot assay. Furthermore, our results demonstrated that CCH could induce excessive autophagy which could be inhibited by VEGF. Thus, we speculated that VEGF could ameliorate impaired synaptic function induced by CCH because of its ability to inhibit excessive autophagy, and eventually improve spatial learning and memory function. Importantly, our findings shed light on potential therapeutic strategies to be exploited in the usage of VEGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An, L., Yang, Z., & Zhang, T. (2013). Imbalanced synaptic plasticity induced spatial cognition impairment in male offspring rats treated with chronic prenatal ethanol exposure. Alcoholism, Clinical and Experimental Research, 37(5), 763–770. doi:10.1111/acer.12040.

    Article  CAS  PubMed  Google Scholar 

  • Balduini, W., De Angelis, V., Mazzoni, E., & Cimino, M. (2001). Simvastatin protects against long-lasting behavioral and morphological consequences of neonatal hypoxic/ischemic brain injury. Stroke, 32(9), 2185–2191.

    Article  CAS  PubMed  Google Scholar 

  • Carloni, S., Buonocore, G., & Balduini, W. (2008). Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiology of Disease, 32(3), 329–339. doi:10.1016/j.nbd.2008.07.022.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, P. G. (1990). Developmental cell death: Morphological diversity and multiple mechanisms. Anatomy and Embryology, 181(3), 195–213.

    Article  CAS  PubMed  Google Scholar 

  • Codogno, P., & Meijer, A. J. (2005). Autophagy and signaling: Their role in cell survival and cell death. Cell Death and Differentiation, 12(Suppl 2), 1509–1518. doi:10.1038/sj.cdd.4401751.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, M. A., Maramara, L. A., & Lisman, J. (2010). A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory. Journal of Cognitive Neuroscience, 22(11), 2530–2540. doi:10.1162/jocn.2009.21375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson, B. A., Meeks, J. J., Roehl, K. A., Gonzalez, C. M., & Catalona, W. J. (2009). Bladder neck contracture after retropubic radical prostatectomy: Incidence and risk factors from a large single-surgeon experience. BJU International, 104(11), 1615–1619. doi:10.1111/j.1464-410X.2009.08700.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eshkoor, S. A., Hamid, T. A., Mun, C. Y., & Ng, C. K. (2015). Mild cognitive impairment and its management in older people. Clinical Interventions in Aging, 10, 687–693. doi:10.2147/CIA.S73922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginet, V., Spiehlmann, A., Rummel, C., Rudinskiy, N., Grishchuk, Y., Luthi-Carter, R., et al. (2014). Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy, 10(5), 846–860. doi:10.4161/auto.28264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruneberg, D., Montellano, F. A., Plaschke, K., Li, L., Marti, H. H., & Kunze, R. (2016). Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Experimental Neurology, 286, 93–106. doi:10.1016/j.expneurol.2016.10.001.

    Article  CAS  PubMed  Google Scholar 

  • Heiss, W. D., Kracht, L. W., Thiel, A., Grond, M., & Pawlik, G. (2001). Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain, 124(Pt 1), 20–29.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Y., Jin, W., Xiao, Y., Dong, Y., Wang, T., Fan, M., et al. (2015). Lipoxin A4 methyl ester alleviates vascular cognition impairment by regulating the expression of proteins related to autophagy and ER stress in the rat hippocampus. Cellular & Molecular Biology Letters, 20(3), 475–487. doi:10.1515/cmble-2015-0027.

    Article  CAS  Google Scholar 

  • Koike, M., Shibata, M., Tadakoshi, M., Gotoh, K., Komatsu, M., Waguri, S., et al. (2008). Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. The American Journal of Pathology, 172(2), 454–469. doi:10.2353/ajpath.2008.070876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095), 880–884. doi:10.1038/nature04723.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K. M., Hwang, S. K., & Lee, J. A. (2013). Neuronal autophagy and neurodevelopmental disorders. Experimental Neurobiology, 22(3), 133–142. doi:10.5607/en.2013.22.3.133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H., Wang, J., Wang, P., Rao, Y., & Chen, L. (2016). Resveratrol reverses the synaptic plasticity deficits in a chronic cerebral hypoperfusion rat model. Journal of Stroke and Cerebrovascular Diseases, 25(1), 122–128. doi:10.1016/j.jstrokecerebrovasdis.2015.09.004.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X. H., Yu, J., Brown, K., & Levine, B. (2001). Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Research, 61(8), 3443–3449.

    CAS  PubMed  Google Scholar 

  • Liu, Z., Hu, M., Lu, P., Wang, H., Qi, Q., Xu, J., et al. (2017). Cerebrolysin alleviates cognitive deficits induced by chronic cerebral hypoperfusion by increasing the levels of plasticity-related proteins and decreasing the levels of apoptosis-related proteins in the rat hippocampus. Neuroscience Letters, 651, 72–78. doi:10.1016/j.neulet.2017.04.022.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Xu, X., Gao, J., Zhang, T., & Yang, Z. (2016). Hydrogen sulfide prevents synaptic plasticity from VD-induced damage via Akt/GSK-3beta pathway and notch signaling pathway in rats. Molecular Neurobiology, 53(6), 4159–4172. doi:10.1007/s12035-015-9324-x.

    Article  CAS  PubMed  Google Scholar 

  • Luo, T., Liu, G., Ma, H., Lu, B., Xu, H., Wang, Y., et al. (2014). Inhibition of autophagy via activation of PI3 K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults. International Journal of Molecular Sciences, 15(9), 15426–15442. doi:10.3390/ijms150915426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri, M. C., Zalckvar, E., Kimchi, A., & Kroemer, G. (2007). Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Reviews Molecular Cell Biology, 8(9), 741–752. doi:10.1038/nrm2239.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto, E. (2006). Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. Journal of Pharmacological Sciences, 100(5), 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451(7182), 1069–1075. doi:10.1038/nature06639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mufson, E. J., Binder, L., Counts, S. E., DeKosky, S. T., de Toledo-Morrell, L., Ginsberg, S. D., et al. (2012). Mild cognitive impairment: Pathology and mechanisms. Acta Neuropathologica, 123(1), 13–30. doi:10.1007/s00401-011-0884-1.

    Article  CAS  PubMed  Google Scholar 

  • Park, J. M., Seong, H. H., Jin, H. B., & Kim, Y. J. (2017). The effect of long-term environmental enrichment in chronic cerebral hypoperfusion-induced memory impairment in rats. Biological Research for Nursing, 19(3), 278–286. doi:10.1177/1099800416686179.

    Article  PubMed  Google Scholar 

  • Petersen, R. C. (2011). Clinical practice. Mild cognitive impairment. The New England Journal of Medicine, 364(23), 2227–2234. doi:10.1056/NEJMcp0910237.

    Article  CAS  PubMed  Google Scholar 

  • Qi, Y., Hu, N. W., & Rowan, M. J. (2013). Switching off LTP: mGlu and NMDA receptor-dependent novelty exploration-induced depotentiation in the rat hippocampus. Cerebral Cortex, 23(4), 932–939. doi:10.1093/cercor/bhs086.

    Article  PubMed  Google Scholar 

  • Silva, A. J. (2003). Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. Journal of Neurobiology, 54(1), 224–237. doi:10.1002/neu.10169.

    Article  CAS  PubMed  Google Scholar 

  • Steiger-Barraissoul, S., & Rami, A. (2009). Serum deprivation induced autophagy and predominantly an AIF-dependent apoptosis in hippocampal HT22 neurons. Apoptosis, 14(11), 1274–1288. doi:10.1007/s10495-009-0396-9.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X. O., Logvinova, A., et al. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. Journal of Clinical Investigation, 111(12), 1843–1851. doi:10.1172/JCI17977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tramutola, A., Triplett, J. C., Di Domenico, F., Niedowicz, D. M., Murphy, M. P., Coccia, R., et al. (2015). Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): Analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. Journal of Neurochemistry, 133(5), 739–749. doi:10.1111/jnc.13037.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Galvan, V., Gorostiza, O., Ataie, M., Jin, K., & Greenberg, D. A. (2006). Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Research, 1115(1), 186–193. doi:10.1016/j.brainres.2006.07.060.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Guan, Y. F., Du, H., Zhai, Q. W., Su, D. F., & Miao, C. Y. (2012). Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy, 8(1), 77–87. doi:10.4161/auto.8.1.18274.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Y. D., Sheng, R., Zhang, L. S., Han, R., Zhang, X., Zhang, X. D., et al. (2008). Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy, 4(6), 762–769.

    Article  CAS  PubMed  Google Scholar 

  • Xing, S., Zhang, Y., Li, J., Zhang, J., Li, Y., Dang, C., et al. (2012). Beclin 1 knockdown inhibits autophagic activation and prevents the secondary neurodegenerative damage in the ipsilateral thalamus following focal cerebral infarction. Autophagy, 8(1), 63–76. doi:10.4161/auto.8.1.18217.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Yao, Y., Chen, T., & Zhang, T. (2014). VEGF ameliorates cognitive impairment in in vivo and in vitro ischemia via improving neuronal viability and function. NeuroMolecular Medicine, 16(2), 376–388. doi:10.1007/s12017-013-8284-4.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Yao, Y., Wang, L., Yang, C., Wang, F., Guo, J., et al. (2017). Gastrin-releasing peptide facilitates glutamatergic transmission in the hippocampus and effectively prevents vascular dementia induced cognitive and synaptic plasticity deficits. Experimental Neurology, 287(Pt 1), 75–83. doi:10.1016/j.expneurol.2016.08.008.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., Zhang, Q., Zhang, W., Li, N., Dai, Y., Tu, J., et al. (2017). Protective effect of 17beta-estradiol upon hippocampal spine density and cognitive function in an animal model of vascular dementia. Scientific Reports, 7, 42660. doi:10.1038/srep42660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, W., Song, Y., Li, Y., Du, Y., Zhang, X., & Fu, J. (2017). The Role of Autophagy in the Correlation Between Neuron Damage and Cognitive Impairment in Rat Chronic Cerebral Hypoperfusion. Molecular Neurobiology. doi:10.1007/s12035-016-0351-z.

    Google Scholar 

  • Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405. doi:10.1146/annurev.physiol.64.092501.114547.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by grants from the National Natural Science Foundation of China (31500865, 91520205) and Tianjin Municipal Natural Science Foundation (17JCQNJC10500). We are grateful to Professor Zhuo Yang and Tao Zhang from Nankai University for providing the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajia Yang or Dong Ming.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, J., Wang, F. et al. VEGF-Mediated Cognitive and Synaptic Improvement in Chronic Cerebral Hypoperfusion Rats Involves Autophagy Process. Neuromol Med 19, 423–435 (2017). https://doi.org/10.1007/s12017-017-8458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-017-8458-6

Keywords

Navigation