Skip to main content

Advertisement

Log in

Mimicking Parkinson’s Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models

NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and has both unknown etiology and non-curative therapeutic options. Patients begin to present the classic motor symptoms of PD—tremor at rest, bradykinesia and rigidity—once 50–70% of the dopaminergic neurons of the nigrostriatal pathway have degenerated. As a consequence of this, it is difficult to investigate the early-stage events of disease pathogenesis. In vitro experimental models are used extensively in PD research because they present a controlled environment that enables the direct investigation of the early molecular mechanisms that are potentially involved with dopaminergic degeneration, as well as for the screening of potential therapeutic drugs. However, the establishment of PD in vitro models is a controversial issue for neuroscience research not only because it is challenging to mimic, in isolated cell systems, the physiological neuronal environment, but also the pathophysiological conditions experienced by human dopaminergic cells in vivo during the progression of the disease. Since no previous work has attempted to systematically review the literature regarding the establishment of an optimal in vitro model, and/or the features presented by available models used in the PD field, this review aims to summarize the merits and limitations of the most widely used dopaminergic in vitro models in PD research, which may help the PD researcher to choose the most appropriate model for studies directed at the elucidation of the early-stage molecular events underlying PD onset and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abad, F., Maroto, R., López, M. G., et al. (1995). Pharmacological protection against the cytotoxicity induced by 6-hydroxydopamine and H2O2 in chromaffin cells. European Journal of Pharmacology, 293, 55–64.

    Article  CAS  PubMed  Google Scholar 

  • Agholme, L., Lindström, T., Kågedal, K., et al. (2010). An in vitro model for neuroscience: differentiation of SH-SY5Y cells into cells with morphological and biochemical characteristics of mature neurons. Journal of Alzheimer’s Disease, 20, 1069–1082. doi:10.3233/JAD-2010-091363.

    Article  CAS  PubMed  Google Scholar 

  • Bal-Price, A. K., Hogberg, H. T., Buzanska, L., & Coecke, S. (2010). Relevance of in vitro neurotoxicity testing for regulatory requirements: Challenges to be considered. Neurotoxicology and Teratology, 32, 36–41. doi:10.1016/j.ntt.2008.12.003.

    Article  CAS  PubMed  Google Scholar 

  • Bayir, H., Kapralov, A. A., Jiang, J., et al. (2009). Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c: Protection against apoptosis versus delayed oxidative stress in parkinson disease. Journal of Biological Chemistry, 284, 15951–15969. doi:10.1074/jbc.M900418200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beal, M. F. (2010). Parkinson’s disease: A model dilemma. Nature, 466, S8–S10. doi:10.1038/466S8a.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, A. I., Garrison, S. P., Zambetti, G. P., & O’Malley, K. L. (2011). 6-OHDA generated ROS induces DNA damage and p53- and PUMA-dependent cell death. Molecular Neurodegeneration, 6, 2. doi:10.1186/1750-1326-6-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bichler, Z., Lim, H. C., Zeng, L., & Tan, E. K. (2013). Non-motor and motor features in LRRK2 transgenic mice. PLoS ONE, 8, e70249. doi:10.1371/journal.pone.0070249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biedler, J. L., Roffler-Tarlov, S., Schachner, M., & Freedman, L. S. (1978). Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Research, 38, 3751–3757.

    CAS  PubMed  Google Scholar 

  • Bolam, J. P., & Pissadaki, E. K. (2012). Living on the edge with too many mouths to feed: Why dopamine neurons die. Movement Disorders, 27, 1478–1483. doi:10.1002/mds.25135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonifati, V., Rizzu, P., van Baren, M. J., et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–259. doi:10.1126/science.1077209.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., Del, Tredici K., Rüb, U., et al. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211. doi:10.1016/S0197-4580(02)00065-9.

    Article  PubMed  Google Scholar 

  • Brichta, L., Greengard, P., & Flajolet, M. (2013). Advances in the pharmacological treatment of Parkinson’s disease: Targeting neurotransmitter systems. Trends in Neurosciences, 36, 543–554. doi:10.1016/j.tins.2013.06.003.

    Article  CAS  PubMed  Google Scholar 

  • Burré, J., Sharma, M., Tsetsenis, T., et al. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science, 329, 1663–1667. doi:10.1126/science.1195227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavaliere, F., Vicente, E. S., & Matute, C. (2010). An organotypic culture model to study nigro-striatal degeneration. Journal of Neuroscience Methods, 188, 205–212. doi:10.1016/j.jneumeth.2010.02.008.

    Article  PubMed  Google Scholar 

  • Chambers, S. M., Fasano, C. A., Papapetrou, E. P., et al. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275–280. doi:10.1038/nbt.1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang-Liu, C. M., & Woloschak, G. E. (1997). Effect of passage number on cellular response to DNA-damaging agents: Cell survival and gene expression. Cancer Letters, 113, 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Cheung, Y.-T., Lau, W. K.-W., Yu, M.-S., et al. (2009). Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology, 30, 127–135. doi:10.1016/j.neuro.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu, R., Constantinescu, A. T., Reichmann, H., & Janetzky, B. (2007). Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y. Journal of Neural Transmission. Supplementum, 72, 17–28.

    Article  CAS  Google Scholar 

  • Cooper, O., Hargus, G., Deleidi, M., et al. (2010). Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Molecular and Cellular Neuroscience, 45, 258–266. doi:10.1016/j.mcn.2010.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrigan, F. M., Wienburg, C. L., Shore, R. F., et al. (2000). Organochlorine insecticides in substantia nigra in Parkinson’s disease. Journal of Toxicology and Environmental Health Part A, 59, 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Cossette, M., Lévesque, D., & Parent, A. (2005). Neurochemical characterization of dopaminergic neurons in human striatum. Parkinsonism and Related Disorders, 11, 277–286. doi:10.1016/j.parkreldis.2005.02.008.

    Article  PubMed  Google Scholar 

  • Daubner, S. C., Le, T., & Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 508, 1–12. doi:10.1016/j.abb.2010.12.017.

    Article  CAS  PubMed  Google Scholar 

  • Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39, 889–909.

    Article  CAS  PubMed  Google Scholar 

  • Daviaud, N., Garbayo, E., Lautram, N., et al. (2014). Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson’s disease. Neuroscience, 256, 10–22. doi:10.1016/j.neuroscience.2013.10.021.

    Article  CAS  PubMed  Google Scholar 

  • Daviaud, N., Garbayo, E., Schiller, P. C., Perez-Pinzon, M., & Montero-Menei, C. N. (2013). Organotypic cultures as tools for optimizing central nervous system cell therapies. Experimental Neurology, 248, 429–440. doi:10.1016/j.expneurol.2013.07.012.

    Article  PubMed  Google Scholar 

  • Davis, G. C., Williams, A. C., Markey, S. P., et al. (1979). Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Research, 1, 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, T. M., Ko, H. S., & Dawson, V. L. (2010). Genetic animal models of Parkinson’s disease. Neuron, 66, 646–661. doi:10.1016/j.neuron.2010.04.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lau, L. M. L., Schipper, C. M. A., Hofman, A., et al. (2005). Prognosis of Parkinson disease: risk of dementia and mortality: The Rotterdam study. Archives of Neurology, 62, 1265–1269. doi:10.1001/archneur.62.8.1265.

    Article  PubMed  Google Scholar 

  • Ding, Y. M., Jaumotte, J. D., Signore, A. P., & Zigmond, M. J. (2004). Effects of 6-hydroxydopamine q. Journal of Neurochemistry, 89, 776–787. doi:10.1111/j.1471-4159.2004.02415.x.

    Article  CAS  PubMed  Google Scholar 

  • Encinas, M., Iglesias, M., Liu, Y., et al. (2000). Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. Journal of Neurochemistry, 75, 991–1003.

    Article  CAS  PubMed  Google Scholar 

  • Falkenburger, B. H., & Schulz, J. B. (2006). Limitations of cellular models in Parkinson’s disease research. Journal of Neural Transmission. Supplementum, 70, 261–268.

    Article  CAS  Google Scholar 

  • Ferreira, M., & Massano, J. (2016). An updated review of Parkinson’s disease genetics and clinicopathological correlations. Acta Neurologica Scandinavica. doi:10.1111/ane.12616.

    PubMed  Google Scholar 

  • Filograna, R., Civiero, L., Ferrari, V., et al. (2015). Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation. PLoS ONE, 10, e0136769. doi:10.1371/journal.pone.0136769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Freshney, I. (2001). Application of cell cultures to toxicology. Cell Biology and Toxicology, 17, 213–230.

    Article  CAS  PubMed  Google Scholar 

  • Gaven, F., Marin, P., & Claeysen, S. (2014). Primary culture of mouse dopaminergic neurons. Journal of Visualized Experiments. doi:10.3791/51751.

    PubMed  PubMed Central  Google Scholar 

  • Gibb, W. R. (1991). Neuropathology of the substantia nigra. European Neurology, 31(Suppl 1), 48–59.

    PubMed  Google Scholar 

  • Gibb, W. R. (1992). Neuropathology of Parkinson’s disease and related syndromes. Neurologic Clinics, 10, 361–376.

    CAS  PubMed  Google Scholar 

  • Gilany, K., Van Elzen, R., Mous, K., et al. (2008). The proteome of the human neuroblastoma cell line SH-SY5Y: An enlarged proteome. Biochimica et Biophysica Acta, 1784, 983–985. doi:10.1016/j.bbapap.2008.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Glinka, Y., Gassen, M., & Youdim, M. B. (1997). Mechanism of 6-hydroxydopamine neurotoxicity. Journal of Neural Transmission. Supplementum, 50, 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Glinka, Y., Tipton, K. F., & Youdim, M. B. (1996). Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. Journal of Neurochemistry, 66, 2004–2010.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lazaro, M., Galindo, M. F., Concannon, C. G., et al. (2008). 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. Journal of Neurochemistry, 104, 1599–1612. doi:10.1111/j.1471-4159.2007.05115.x.

    Article  CAS  PubMed  Google Scholar 

  • Halterman, M. W., Giuliano, R., Dejesus, C., & Schor, N. F. (2009). In-tube transfection improves the efficiency of gene transfer in primary neuronal cultures. Journal of Neuroscience Methods, 177, 348–354. doi:10.1016/j.jneumeth.2008.10.023.

    Article  CAS  PubMed  Google Scholar 

  • Han, B. S., Hong, H.-S., Choi, W.-S., et al. (2003). Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment. Journal of Neuroscience, 23, 5069–5078.

    CAS  PubMed  Google Scholar 

  • Hartfield, E. M., Yamasaki-Mann, M., Ribeiro Fernandes, H. J., et al. (2014). Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS ONE, 9, e87388. doi:10.1371/journal.pone.0087388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrup, K., & Yang, Y. (2007). Cell cycle regulation in the postmitotic neuron: Oxymoron or new biology? Nature Reviews Neuroscience, 8, 368–378. doi:10.1038/nrn2124.

    Article  CAS  PubMed  Google Scholar 

  • Howman-Giles, R., Shaw, P. J., Uren, R. F., & Chung, D. K. V. (2007). Neuroblastoma and other neuroendocrine tumors. Seminars in Nuclear Medicine, 37, 286–302. doi:10.1053/j.semnuclmed.2007.02.009.

    Article  PubMed  Google Scholar 

  • Humpel, C. (2015). Organotypic brain slice cultures: A review. Neuroscience, 305, 86–98. doi:10.1016/j.neuroscience.2015.07.086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias-González, J., Sánchez-Iglesias, S., Méndez-Álvarez, E., et al. (2012). Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase. Neurochemical Research, 37, 2150–2160. doi:10.1007/s11064-012-0838-6.

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi, Y., & Okano, H. (2014). Modeling human neurological disorders with induced pluripotent stem cells. Journal of Neurochemistry, 129, 388–399. doi:10.1111/jnc.12625.

    Article  CAS  PubMed  Google Scholar 

  • Izumi, Y., Sawada, H., Sakka, N., et al. (2005). p-quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. Journal of Neuroscience Research, 79, 849–860. doi:10.1002/jnr.20382.

    Article  CAS  PubMed  Google Scholar 

  • Jagmag, S. A., Tripathi, N., Shukla, S. D., et al. (2015). Evaluation of models of Parkinson’s disease. Frontiers in Neuroscience, 9, 503. doi:10.3389/fnins.2015.00503.

    PubMed  Google Scholar 

  • Jankovic, J., & Poewe, W. (2012). Therapies in Parkinson’s disease. Current Opinion in Neurology, 25, 433–447. doi:10.1097/WCO.0b013e3283542fc2.

    Article  CAS  PubMed  Google Scholar 

  • Javitch, J. A., & Snyder, S. H. (1984). Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. European Journal of Pharmacology, 106, 455–456.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H., Ren, Y., Yuen, E. Y., et al. (2012). Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nature Communications, 3, 668. doi:10.1038/ncomms1669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jo, J., Xiao, Y., Sun, A. X., et al. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell, 19, 248–257. doi:10.1016/j.stem.2016.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamp, F., Exner, N., Lutz, A. K., et al. (2010). Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO Journal, 29, 3571–3589. doi:10.1038/emboj.2010.223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel, E., Schwartz, J., Jessell, T., et al. (2013). Principles of neural science. McGraw-Hill Education.

  • Kanthasamy, A. G., Anantharam, V., Zhang, D., et al. (2006). A novel peptide inhibitor targeted to caspase-3 cleavage site of a proapoptotic kinase protein kinase C delta (PKCdelta) protects against dopaminergic neuronal degeneration in Parkinson’s disease models. Free Radical Biology and Medicine, 41, 1578–1589. doi:10.1016/j.freeradbiomed.2006.08.016.

    Article  CAS  PubMed  Google Scholar 

  • Karunakaran, S., Saeed, U., Mishra, M., et al. (2008). Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Journal of Neuroscience, 28, 12500–12509. doi:10.1523/JNEUROSCI.4511-08.2008.

    Article  CAS  PubMed  Google Scholar 

  • Kearns, S. M., Scheffler, B., Goetz, A. K., et al. (2006). A method for a more complete in vitro Parkinson’s model: Slice culture bioassay for modeling maintenance and repair of the nigrostriatal circuit. Journal of Neuroscience Methods, 157, 1–9. doi:10.3201/eid1204.050756.

    Article  PubMed  Google Scholar 

  • Kriks, S., Shim, J.-W., Piao, J., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. doi:10.1038/nature10648.

    PubMed  PubMed Central  Google Scholar 

  • Lancaster, M. A., & Knoblich, J. A. (2014a). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345(80), 1247125. doi:10.1126/science.1247125.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster, M. A., & Knoblich, J. A. (2014b). Generation of cerebral organoids from human pluripotent stem cells. Nature Protocols, 9, 2329–2340. doi:10.1038/nprot.2014.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster, M., Renner, M., Martin, C.-A., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379. doi:10.1038/nature12517.

    Article  CAS  PubMed  Google Scholar 

  • Lane, E., & Dunnett, S. (2008). Animal models of Parkinson’s disease and L-dopa induced dyskinesia: How close are we to the clinic? Psychopharmacology (Berl), 199, 303–312. doi:10.1007/s00213-007-0931-8.

    Article  CAS  Google Scholar 

  • Langston, J. W., & Ballard, P. A. (1983). Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. New England Journal of Medicine, 309, 310.

    CAS  PubMed  Google Scholar 

  • Larsen, T. R., Söderling, A.-S., Caidahl, K., et al. (2008). Nitration of soluble proteins in organotypic culture models of Parkinson’s disease. Neurochemistry International, 52, 487–494. doi:10.1016/j.neuint.2007.08.008.

    Article  CAS  PubMed  Google Scholar 

  • Laverty, R., Sharman, D. F., & Vogt, M. (1965). Action of 2, 4, 5-trihydroxyphenylethylamine on the storage and release of noradrenaline. British Journal of Pharmacology and Chemotherapy, 24, 549–560. doi:10.1111/j.1476-5381.1965.tb01745.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, C.-Y., & Tsai, C.-W. (2016). Carnosic acid attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells by inducing autophagy through an enhanced interaction of Parkin and Beclin1. Molecular Neurobiology. doi:10.1007/s12035-016-9873-7.

    Google Scholar 

  • Lodish, H., Berk, A., Zipursky. S. L., et al. (2000). Neurotransmitters, synapses, and impulse transmission. In Molecular cell biology (4th ed.). New York: W. H. Freeman.

  • Lopes, F. M., da Motta, L. L., De Bastiani, M. A., et al. (2017). RA differentiation enhances dopaminergic features, changes redox parameters, and increases dopamine transporter dependency in 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Neurotoxicity Research. doi:10.1007/s12640-016-9699-0.

    Google Scholar 

  • Lopes, F. M., Schröder, R., da Frota, M. L. C., et al. (2010). Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Research, 1337, 85–94. doi:10.1016/j.brainres.2010.03.102.

    Article  CAS  PubMed  Google Scholar 

  • Lotharius, J., Falsig, J., van Beek, J., et al. (2005). Progressive degeneration of human mesencephalic neuron-derived cells triggered by dopamine-dependent oxidative stress is dependent on the mixed-lineage kinase pathway. Journal of Neuroscience, 25, 6329–6342. doi:10.1523/JNEUROSCI.1746-05.2005.

    Article  CAS  PubMed  Google Scholar 

  • Luchtman, D. W., & Song, C. (2010). Why SH-SY5Y cells should be differentiated. Neurotoxicology, 31, 164–165. doi:10.1016/j.neuro.2009.10.015.

    Article  PubMed  Google Scholar 

  • Luthman, J., Fredriksson, A., Sundström, E., et al. (1989). Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behavioural Brain Research, 33, 267–277.

    Article  CAS  PubMed  Google Scholar 

  • Maqsood, M. I., Matin, M. M., Bahrami, A. R., & Ghasroldasht, M. M. (2013). Immortality of cell lines: Challenges and advantages of establishment. Cell Biology International, 37, 1038–1045. doi:10.1002/cbin.10137.

    Article  PubMed  Google Scholar 

  • Marder, K., Tang, M. X., Mejia, H., et al. (1996). Risk of Parkinson’s disease among first-degree relatives: A community-based study. Neurology, 47, 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Martella, G., Madeo, G., Maltese, M., et al. (2016). Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice. Neurobiology of Diseases, 91, 21–36. doi:10.1016/j.nbd.2015.12.020.

    Article  CAS  Google Scholar 

  • Matsuda, W., Furuta, T., Nakamura, K. C., et al. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. Journal of Neuroscience, 29, 444–453. doi:10.1523/JNEUROSCI.4029-08.2009.

    Article  CAS  PubMed  Google Scholar 

  • Mizuno, Y., Sone, N., & Saitoh, T. (1987). Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. Journal of Neurochemistry, 48, 1787–1793.

    Article  CAS  PubMed  Google Scholar 

  • Nalls, M. A., Pankratz, N., Lill, C. M., et al. (2014). Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nature Genetics, 46, 989–993. doi:10.1038/ng.3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicklas, W. J., Youngster, S. K., Kindt, M. V., & Heikkila, R. E. (1987). MPTP, MPP + and mitochondrial function. Life Sciences, 40, 721–729.

    Article  CAS  PubMed  Google Scholar 

  • Nikolaus, S., Antke, C., Kley, K., et al. (2007). Investigating the dopaminergic synapse in vivo. I. Molecular imaging studies in humans. Reviews in the Neurosciences, 18, 439–472.

    CAS  PubMed  Google Scholar 

  • Olanow, C. W., Kieburtz, K., & Schapira, A. H. V. (2008). Why have we failed to achieve neuroprotection in Parkinson’s disease? Annals of Neurology, 64(Suppl 2), S101–S110. doi:10.1002/ana.21461.

    CAS  PubMed  Google Scholar 

  • Olanow, C. W., Kieburtz, K., & Schapira, A. H. V. (2009). Why have we failed to achieve neuroprotection in Parkinson’s disease? Annals of Neurology, 64, S101–S110. doi:10.1002/ana.21461.

    Article  CAS  Google Scholar 

  • Orenstein, S. J., Kuo, S.-H., Tasset, I., et al. (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 16, 394–406. doi:10.1038/nn.3350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Påhlman, S., Ruusala, A. I., Abrahamsson, L., et al. (1984). Retinoic acid-induced differentiation of cultured human neuroblastoma cells: A comparison with phorbolester-induced differentiation. Cell Differentiation, 14, 135–144.

    Article  PubMed  Google Scholar 

  • Parker, W. D., Parks, J. K., & Swerdlow, R. H. (2008). Complex I deficiency in Parkinson’s disease frontal cortex. Brain Research, 1189, 215–218. doi:10.1016/j.brainres.2007.10.061.

    Article  CAS  PubMed  Google Scholar 

  • Pišlar, A. H., Zidar, N., Kikelj, D., & Kos, J. (2014). Cathepsin X promotes 6-hydroxydopamine-induced apoptosis of PC12 and SH-SY5Y cells. Neuropharmacology, 82, 121–131. doi:10.1016/j.neuropharm.2013.07.040.

    Article  PubMed  CAS  Google Scholar 

  • Plenz, D., & Kitai, S. T. (1996). Organotypic cortex-striatum-mesencephalon cultures: the nigrostriatal pathway. Neuroscience Letters, 209, 177–180.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Potashkin, J. A., Blume, S. R., & Runkle, N. K. (2010). Limitations of animal models of Parkinson’s disease. Parkinsons Disease, 2011, 658083. doi:10.4061/2011/658083.

    CAS  Google Scholar 

  • Presgraves, S. P., Ahmed, T., Borwege, S., & Joyce, J. N. (2004). Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotoxicity Research, 5, 579–598.

    Article  PubMed  Google Scholar 

  • Price, K. S., Farley, I. J., & Hornykiewicz, O. (1978). Neurochemistry of Parkinson’s disease: Relation between striatal and limbic dopamine. Advances in Biochemical Psychopharmacology, 19, 293–300.

    CAS  PubMed  Google Scholar 

  • Przedborski, S., Jackson-Lewis, V., Naini, A. B., et al. (2001). The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): A technical review of its utility and safety. Journal of Neurochemistry, 76, 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  • Pu, J., Jiang, H., Zhang, B., & Feng, J. (2012). Redefining Parkinson’s disease research using induced pluripotent stem cells. Current Neurology and Neuroscience Reports, 12, 392–398. doi:10.1007/s11910-012-0288-1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Radio, N. M., & Mundy, W. R. (2008). Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth. Neurotoxicology, 29, 361–376. doi:10.1016/j.neuro.2008.02.011.

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy, S., Shippenberg, T. S., & Jayanthi, L. D. (2011). Regulation of monoamine transporters: Role of transporter phosphorylation. Pharmacology & Therapeutics, 129, 220–238. doi:10.1016/j.pharmthera.2010.09.009.

    Article  CAS  Google Scholar 

  • Richardson, J. R., Shalat, S. L., Buckley, B., et al. (2009). Elevated serum pesticide levels and risk of Parkinson disease. Archives of Neurology, 66, 870–875. doi:10.1001/archneurol.2009.89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Pallares, J., Parga, J. A., Muñoz, A., et al. (2007). Mechanism of 6-hydroxydopamine neurotoxicity: The role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. Journal of Neurochemistry, 103, 145–156. doi:10.1111/j.1471-4159.2007.04699.x.

    CAS  PubMed  Google Scholar 

  • Ryan, S. D., Dolatabadi, N., Chan, S. F., et al. (2013). Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell, 155, 1351–1364. doi:10.1016/j.cell.2013.11.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, Y., Nishio, K., Ogawa, Y., et al. (2007). Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: Involvement of hydrogen peroxide-dependent and -independent action. Free Radical Biology and Medicine, 42, 675–685. doi:10.1016/j.freeradbiomed.2006.12.004.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Danés, A., Richaud-Patin, Y., Carballo-Carbajal, I., et al. (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Molecular Medicine, 4, 380–395. doi:10.1002/emmm.201200215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saporito, M. S., Thomas, B. A., & Scott, R. W. (2000). MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. Journal of Neurochemistry, 75, 1200–1208.

    Article  CAS  PubMed  Google Scholar 

  • Sauerbier, A., Jenner, P., Todorova, A., & Chaudhuri, K. R. (2015). Non motor subtypes and Parkinson’s disease. Parkinsonism & Related Disorders. doi:10.1016/j.parkreldis.2015.09.027.

    Google Scholar 

  • Schapira, A. H., Mann, V. M., Cooper, J. M., et al. (1990). Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. Journal of Neurochemistry, 55, 2142–2145.

    Article  CAS  PubMed  Google Scholar 

  • Schildknecht, S., Karreman, C., Pöltl, D., et al. (2013). Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. Altex, 30, 427–444.

    Article  PubMed  Google Scholar 

  • Schildknecht, S., Pöltl, D., Nagel, D. M., et al. (2009). Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicology and Applied Pharmacology, 241, 23–35. doi:10.1016/j.taap.2009.07.027.

    Article  CAS  PubMed  Google Scholar 

  • Schlachetzki, J. C. M., Saliba, S. W., & de Oliveira, A. C. P. (2013). Studying neurodegenerative diseases in culture models. Rev Bras Psiquiatr (São Paulo, Brazil 1999), 35(Suppl 2), S92–S100. doi:10.1590/1516-4446-2013-1159.

    Article  Google Scholar 

  • Scholz, D., Pöltl, D., Genewsky, A., et al. (2011). Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. Journal of Neurochemistry, 119, 957–971. doi:10.1111/j.1471-4159.2011.07255.x.

    Article  CAS  PubMed  Google Scholar 

  • Schönhofen, P., de Medeiros, L. M., Bristot, I. J., et al. (2015). Cannabidiol exposure during neuronal differentiation sensitizes cells against redox-active neurotoxins. Molecular Neurobiology, 52, 26–37. doi:10.1007/s12035-014-8843-1.

    Article  PubMed  CAS  Google Scholar 

  • Schüle, B., Pera, R. A. R., & Langston, J. W. (2009). Can cellular models revolutionize drug discovery in Parkinson’s disease? Biochimica et Biophysica Acta, 1792, 1043–1051. doi:10.1016/j.bbadis.2009.08.014.

    Article  PubMed  CAS  Google Scholar 

  • Scott, W. K., Staijich, J. M., Yamaoka, L. H., et al. (1997). Genetic complexity and Parkinson’s disease. Deane Laboratory Parkinson Disease Research Group. Science, 277, 387–389.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., & Kostrzewa, R. M. (2015). Neurotoxin mechanisms and processes relevant to Parkinson’s disease: An update. Neurotoxicity Research, 27, 328–354. doi:10.1007/s12640-015-9519-y.

    Article  CAS  PubMed  Google Scholar 

  • Seibler, P., Graziotto, J., Jeong, H., et al. (2011). Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. Journal of Neuroscience, 31, 5970–5976. doi:10.1523/JNEUROSCI.4441-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shay, J. W., Wright, W. E., & Werbin, H. (1991). Defining the molecular mechanisms of human cell immortalization. Biochimica et Biophysica Acta, 1072, 1–7.

    CAS  PubMed  Google Scholar 

  • Shimura, H., Hattori, N., Kubo, S. I., et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics, 25, 302–305. doi:10.1038/77060.

    Article  CAS  PubMed  Google Scholar 

  • Soto-Otero, R., Méndez-Alvarez, E., Hermida-Ameijeiras, A., et al. (2000). Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: Potential implication in relation to the pathogenesis of Parkinson’s disease. Journal of Neurochemistry, 74, 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  • Spatola, M., & Wider, C. (2014). Genetics of Parkinson’s disease: the yield. Parkinsonism & Related Disorders, 20(Suppl 1), S35–S38. doi:10.1016/S1353-8020(13)70011-7.

    Article  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., et al. (1997). [alpha]-Synuclein in Lewy bodies. Nature, 388, 839–840.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, K., Skare, Ø., & Torp, R. (2009). Organotypic cultures as a model of Parkinson s disease. A twist to an old model. ScientificWorldJournal, 9, 811–821. doi:10.1100/tsw.2009.68.

    Article  CAS  PubMed  Google Scholar 

  • Stępkowski, T. M., Wasyk, I., Grzelak, A., & Kruszewski, M. (2015). 6-OHDA-induced changes in Parkinson’s disease-related gene expression are not affected by the overexpression of PGAM5 in in vitro differentiated embryonic mesencephalic cells. Cellular and Molecular Neurobiology, 35, 1137–1147. doi:10.1007/s10571-015-0207-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoppini, L., Buchs, P. A., & Muller, D. (1991). A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods, 37, 173–182.

    Article  CAS  PubMed  Google Scholar 

  • Storch, A., Kaftan, A., Burkhardt, K., & Schwarz, J. (2000). 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: Independent of mitochondrial energy metabolism. Journal of Neural Transmission, 107, 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Stuchbury, G., & Münch, G. (2010). Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology, 62, 189–194. doi:10.1007/s10616-010-9273-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Studer, L. (2001). Culture of substantia nigra neurons. Current Protocols in Neuroscience Chapter 3: Unit 3.3. doi:10.1002/0471142301.ns0303s00.

    Google Scholar 

  • Su, Y.-C., & Qi, X. (2013). Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Human Molecular Genetics, 22, 4545–4561. doi:10.1093/hmg/ddt301.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature Protocols, 2, 3081–3089. doi:10.1038/nprot.2007.418.

    Article  CAS  PubMed  Google Scholar 

  • Tanner, C. M., Kamel, F., Ross, G. W., et al. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives, 119, 866–872. doi:10.1289/ehp.1002839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, M. G., Saldanha, M., Mistry, R. J., et al. (2013). Nicotinamide N-methyltransferase expression in SH-SY5Y neuroblastoma and N27 mesencephalic neurones induces changes in cell morphology via ephrin-B2 and Akt signalling. Cell Death and Disease, 4, e669. doi:10.1038/cddis.2013.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tieng, V., Stoppini, L., Villy, S., et al. (2014). Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells and Development, 23, 1535–1547. doi:10.1089/scd.2013.0442.

    Article  CAS  PubMed  Google Scholar 

  • Tönges, L., Frank, T., Tatenhorst, L., et al. (2012). Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain, 135, 3355–3370. doi:10.1093/brain/aws254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Valente, E. M., Abou-Sleiman, P. M., Caputo, V., et al. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160. doi:10.1126/science.1096284.

    Article  CAS  PubMed  Google Scholar 

  • Van Kampen, J. M., McGeer, E. G., & Stoessl, A. J. (2000). Dopamine transporter function assessed by antisense knockdown in the rat: protection from dopamine neurotoxicity. Synapse, 37, 171–178. doi:10.1002/1098-2396(20000901)37:3<171:AID-SYN1>3.0.CO;2-R.

    Article  PubMed  Google Scholar 

  • Vernon, A. C., Crum, W. R., Johansson, S. M., & Modo, M. (2011). Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson’s disease. PLoS ONE, 6, e17269. doi:10.1371/journal.pone.0017269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vila, M., Jackson-Lewis, V., Vukosavic, S., et al. (2001). Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States, 98, 2837–2842. doi:10.1073/pnas.051633998.

    Article  CAS  Google Scholar 

  • Wei, L., Ding, L., Mo, M.-S., et al. (2015). Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Translational Neurodegeneration, 4, 11. doi:10.1186/s40035-015-0033-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinert, M., Selvakumar, T., Tierney, T. S., & Alavian, K. N. (2015). Isolation, culture and long-term maintenance of primary mesencephalic dopaminergic neurons from embryonic rodent brains. Journal of Visualized Experiments. doi:10.3791/52475.

    PubMed  PubMed Central  Google Scholar 

  • Weisskopf, M. G., Knekt, P., O’Reilly, E. J., et al. (2010). Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology, 74, 1055–1061. doi:10.1212/WNL.0b013e3181d76a93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xicoy, H., Wieringa, B., & Martens, G. J. M. (2017). The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Molecular Neurodegeneration, 12, 10. doi:10.1186/s13024-017-0149-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Vodyanik, M. A., Smuga-Otto, K., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917–1920. doi:10.1126/science.1151526.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.-M., Yin, M., & Zhang, M.-H. (2014). Cell-based assays for Parkinson’s disease using differentiated human LUHMES cells. Acta Pharmacologica Sinica, 35, 945–956. doi:10.1038/aps.2014.36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, Z. D., Lan, Y. H., Tan, E. K., & Lim, T. M. (2010). Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radical Biology and Medicine, 49, 1856–1871. doi:10.1016/j.freeradbiomed.2010.09.010.

    Article  CAS  PubMed  Google Scholar 

  • Zimprich, A., Benet-Pagès, A., Struhal, W., et al. (2011). A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. American Journal of Human Genetics, 89, 168–175. doi:10.1016/j.ajhg.2011.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimprich, A., Biskup, S., Leitner, P., et al. (2004). Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron, 44, 601–607. doi:10.1016/j.neuron.2004.11.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Brazilian funds CNPq/MS/SCTIE/DECIT—Pesquisas Sobre Doenças Neurodegenerativas [#466989/2014-8], MCT/CNPq INCT-TM [#573671/2008-7] and Rapid Response Innovation Award/MJFF [#1326-2014] provided the financial support without interference in the ongoing work. FK received a fellowship from MCT/CNPq [#306439/2014-0]. FML received a fellowship from Programa de Doutorado Sanduíche no Exterior—PDSE/CAPES [#14581/2013-2].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda Martins Lopes or Fabio Klamt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, F.M., Bristot, I.J., da Motta, L.L. et al. Mimicking Parkinson’s Disease in a Dish: Merits and Pitfalls of the Most Commonly used Dopaminergic In Vitro Models. Neuromol Med 19, 241–255 (2017). https://doi.org/10.1007/s12017-017-8454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-017-8454-x

Keywords

Navigation