Skip to main content
Log in

SUMO: a (Oxidative) Stressed Protein

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Redox species are produced during the physiological cellular metabolism of a normal tissue. In turn, their presence is also attributed to pathological conditions including neurodegenerative diseases. Many are the molecular changes that occur during the unbalance of the redox homeostasis. Interestingly, posttranslational protein modifications (PTMs) play a remarkable role. In fact, several target proteins are modified in their activation, localization, aggregation, and expression after the cellular stress. Among PTMs, protein SUMOylation represents a very important molecular modification pathway during “oxidative stress”. It has been reported that this ubiquitin-like modification is a fine sensor for redox species. Indeed, SUMOylation pathway efficiency is affected by the exposure to oxidative species in a different manner depending on the concentration and time of application. Thus, we here report updated evidence that states the role of SUMOylation in several pathological conditions, and we also outline the key involvement of c-Jun N-terminal kinase and small ubiquitin modifier pathway cross talk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, D. B., Wilkinson, K. A., & Henley, J. M. (2009). Protein SUMOylation in neuropathological conditions. Drug news and perspectives, 22(5), 255–265.

    PubMed  CAS  Google Scholar 

  • Armogida, M., Nisticò, R., & Mercuri, N. B. (2012). Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. British Journal of Pharmacology, 166(4), 1211–1224.

    PubMed  CAS  Google Scholar 

  • Behrens, A., Sibilia, M., & Wagner, E. F. (1999). Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genetics, 21(3), 326–329.

    PubMed  CAS  Google Scholar 

  • Boggio, R., Colombo, R., Hay, R. T., Draetta, G. F., & Chiocca, S. (2004). A mechanism for inhibiting the SUMO pathway. Molecular Cell, 16(4), 549–561.

    PubMed  CAS  Google Scholar 

  • Bohren, K. M., Nadkarni, V., Song, J. H., Gabbay, K. H., & Owerbach, D. (2004). A M55 V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. The Journal of biological chemistry, 279(26), 27233–27238.

    PubMed  CAS  Google Scholar 

  • Bononi, A., Agnoletto, C., De Marchi, E., Marchi, S., Patergnani, S., Bonora, M., et al. (2011). Protein kinases and phosphatases in the control of cell fate. Enzyme research, 2011, 329098.

    PubMed  Google Scholar 

  • Borsello, T., Clarke, P. G. H., Hirt, L., Vercelli, A., Repici, M., Schorderet, D. F., et al. (2003). A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nature Medicine, 9(9), 1180–1186.

    PubMed  CAS  Google Scholar 

  • Bossis, G., Malnou, C. E., Farras, R., Andermarcher, E., Hipskind, R., Rodriguez, M., et al. (2005). Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation. Molecular and Cellular Biology, 25(16), 6964–6979.

    PubMed  CAS  Google Scholar 

  • Bossis, G., & Melchior, F. (2006a). SUMO: Regulating the regulator. Cell division, 1, 13.

    PubMed  Google Scholar 

  • Bossis, G., & Melchior, F. (2006b). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell, 21(3), 349–357.

    PubMed  CAS  Google Scholar 

  • Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 29(3–4), 222–230.

    PubMed  CAS  Google Scholar 

  • Choi, S. J., Chung, S. S., Rho, E. J., Lee, H. W., Lee, M. H., Choi, H.-S., et al. (2006). Negative modulation of RXRalpha transcriptional activity by small ubiquitin-related modifier (SUMO) modification and its reversal by SUMO-specific protease SUSP1. The Journal of biological chemistry, 281(41), 30669–30677.

    PubMed  CAS  Google Scholar 

  • Choi, W.-S., Klintworth, H. M., & Xia, Z. (2011). JNK3-mediated apoptotic cell death in primary dopaminergic neurons. Methods in molecular biology (Clifton, NJ), 758, 279–292.

    CAS  Google Scholar 

  • Ciechanover, A., Elias, S., Heller, H., Ferber, S., & Hershko, A. (1980). Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes. The Journal of biological chemistry, 255(16), 7525–7528.

    PubMed  CAS  Google Scholar 

  • Dadke, S., Cotteret, S., Yip, S.-C., Jaffer, Z. M., Haj, F., Ivanov, A., et al. (2007). Regulation of protein tyrosine phosphatase 1B by sumoylation. Nature Cell Biology, 9(1), 80–85.

    PubMed  CAS  Google Scholar 

  • Dangoumau, A., Veyrat-Durebex, C., Blasco, H., Praline, J., Corcia, P., Andres, C. R., et al. (2013). Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. The International journal of neuroscience, 123(6), 366–374.

    PubMed  CAS  Google Scholar 

  • Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239–252.

    PubMed  CAS  Google Scholar 

  • De la Vega, L., Grishina, I., Moreno, R., Krüger, M., Braun, T., & Schmitz, M. L. (2012). A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Molecular Cell, 46(4), 472–483.

    PubMed  Google Scholar 

  • Desterro, J. M., Rodriguez, M. S., & Hay, R. T. (1998). SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Molecular Cell, 2(2), 233–239.

    PubMed  CAS  Google Scholar 

  • Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. D. (2004). Free radicals and antioxidants in human health: current status and future prospects. The Journal of the Association of Physicians of India, 52, 794–804.

    PubMed  CAS  Google Scholar 

  • Dorval, V., & Fraser, P. E. (2006). Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. The Journal of biological chemistry, 281(15), 9919–9924.

    PubMed  CAS  Google Scholar 

  • Dorval, V., Mazzella, M. J., Mathews, P. M., Hay, R. T., & Fraser, P. E. (2007). Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. The Biochemical Journal, 404(2), 309–316.

    PubMed  CAS  Google Scholar 

  • Elsasser, S., Gali, R. R., Schwickart, M., Larsen, C. N., Leggett, D. S., Müller, B., et al. (2002). Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biology, 4(9), 725–730.

    PubMed  CAS  Google Scholar 

  • Fei, E., Jia, N., Yan, M., Ying, Z., Sun, Q., Wang, H., et al. (2006). SUMO-1 modification increases human SOD1 stability and aggregation. Biochemical and Biophysical Research Communications, 347(2), 406–412.

    PubMed  CAS  Google Scholar 

  • Feligioni, M., Brambilla, E., Camassa, A., Sclip, A., Arnaboldi, A., Morelli, F., et al. (2011). Crosstalk between JNK and SUMO Signaling Pathways: deSUMOylation Is Protective against H(2)O(2)-Induced Cell Injury. PLoS ONE, 6(12), e28185.

    PubMed  CAS  Google Scholar 

  • Foran, E., Bogush, A., Goffredo, M., Roncaglia, P., Gustincich, S., Pasinelli, P., et al. (2011). Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia, 59(11), 1719–1731.

    PubMed  Google Scholar 

  • Gareau, J. R., & Lima, C. D. (2010). The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition. Nature Reviews Molecular Cell Biology, 11(12), 861–871.

    PubMed  CAS  Google Scholar 

  • Gibb, S. L., Boston-Howes, W., Lavina, Z. S., Gustincich, S., Brown, R. H., Pasinelli, P., et al. (2007). A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. The Journal of biological chemistry, 282(44), 32480–32490.

    PubMed  CAS  Google Scholar 

  • Giorgino, F., de Robertis, O., Laviola, L., Montrone, C., Perrini, S., McCowen, K. C., et al. (2000). The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 97(3), 1125–1130.

    PubMed  CAS  Google Scholar 

  • Gius, D., Botero, A., Shah, S., & Curry, H. A. (1999). Intracellular oxidation/reduction status in the regulation of transcription factors NF-kappaB and AP-1. Toxicology Letters, 106(2–3), 93–106.

    PubMed  CAS  Google Scholar 

  • Guo, D., Han, J., Adam, B.-L., Colburn, N. H., Wang, M.-H., Dong, Z., et al. (2005). Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. Biochemical and Biophysical Research Communications, 337(4), 1308–1318.

    PubMed  CAS  Google Scholar 

  • Guo, D., Li, M., Zhang, Y., Yang, P., Eckenrode, S., Hopkins, D., et al. (2004). A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nature Genetics, 36(8), 837–841.

    PubMed  CAS  Google Scholar 

  • Henchcliffe, C., & Beal, M. F. (2008). Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nature clinical practice. Neurology, 4(11), 600–609.

    PubMed  CAS  Google Scholar 

  • Hernández, F., Gómez de Barreda, E., Fuster-Matanzo, A., Lucas, J. J., & Avila, J. (2010). GSK3: A possible link between beta amyloid peptide and tau protein. Experimental Neurology, 223(2), 322–325.

    PubMed  Google Scholar 

  • Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    PubMed  CAS  Google Scholar 

  • Hershko, A., Heller, H., Elias, S., & Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of biological chemistry, 258(13), 8206–8214.

    PubMed  CAS  Google Scholar 

  • Hochstrasser, M. (2000a). Biochemistry. All in the ubiquitin family. Science (New York, NY), 289(5479), 563–564.

    CAS  Google Scholar 

  • Hochstrasser, M. (2000b). Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biology, 2(8), E153–E157.

    PubMed  CAS  Google Scholar 

  • Hochstrasser, Mark. (2009). Origin and function of ubiquitin-like proteins. Nature, 458(7237), 422–429.

    PubMed  CAS  Google Scholar 

  • Huang, J., & Berger, S. L. (2008). The emerging field of dynamic lysine methylation of non-histone proteins. Current Opinion in Genetics and Development, 18(2), 152–158.

    PubMed  CAS  Google Scholar 

  • Huang, H., Du, G., Chen, H., Liang, X., Li, C., Zhu, N., et al. (2011). Drosophila Smt3 negatively regulates JNK signaling through sequestering Hipk in the nucleus. Development(Cambridge, England), 138(12), 2477–2485.

    CAS  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2003). Trk receptors: Roles in neuronal signal transduction. Annual Review of Biochemistry, 72, 609–642.

    PubMed  CAS  Google Scholar 

  • Kerscher, O., Felberbaum, R., & Hochstrasser, M. (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annual Review of Cell and Developmental Biology, 22, 159–180.

    PubMed  CAS  Google Scholar 

  • Kharb, S., Singh, V., Ghalaut, P. S., & Singh, G. P. (2000). Oxidative stress after acute myocardial infarction: Effect of thrombolytic treatment. The Journal of the Association of Physicians of India, 48(6), 578–580.

    PubMed  CAS  Google Scholar 

  • Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H–. H., Bossis, G., et al. (2011). Sumoylation inhibits alpha-synuclein aggregation and toxicity. The Journal of cell biology, 194(1), 49–60.

    PubMed  CAS  Google Scholar 

  • Krumova, P., & Weishaupt, J. H. (2013). Sumoylation in neurodegenerative diseases. Cellular and molecular life sciences : CMLS, 70(12), 2123–2138.

    PubMed  CAS  Google Scholar 

  • Kuan, C. Y., Yang, D. D., Samanta Roy, D. R., Davis, R. J., Rakic, P., & Flavell, R. A. (1999). The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron, 22(4), 667–676.

    PubMed  CAS  Google Scholar 

  • Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., et al. (1994). The stress-activated protein kinase subfamily of c-Jun kinases. Nature, 369(6476), 156–160.

    PubMed  CAS  Google Scholar 

  • La Rosa, L. R., Matrone, C., Ferraina, C., Panico, M. B., Piccirilli, S., Di Certo, M. G., et al. (2013). Age-related changes of hippocampal synaptic plasticity in AβPP-null mice are restored by NGF through p75NTR. Journal of Alzheimer’s disease : JAD, 33(1), 265–272.

    PubMed  Google Scholar 

  • Lalioti, V. S., Vergarajauregui, S., Pulido, D., & Sandoval, I. V. (2002). The insulin-sensitive glucose transporter, GLUT4, interacts physically with Daxx. Two proteins with capacity to bind Ubc9 and conjugated to SUMO1. The Journal of biological chemistry, 277(22), 19783–19791.

    PubMed  CAS  Google Scholar 

  • Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3), 181–189.

    PubMed  CAS  Google Scholar 

  • Lee, Y.-S., Jang, M.-S., Lee, J.-S., Choi, E.-J., & Kim, E. (2005). SUMO-1 represses apoptosis signal-regulating kinase 1 activation through physical interaction and not through covalent modification. EMBO Reports, 6(10), 949–955.

    PubMed  CAS  Google Scholar 

  • Leitao, B. B., Jones, M. C., & Brosens, J. J. (2011). The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. The FASEB journal : Official Publication of the Federation of American Societies for Experimental Biology, 25(10), 3416–3425.

    CAS  Google Scholar 

  • Li, M., Guo, D., Isales, C. M., Eizirik, D. L., Atkinson, M., She, J.-X., et al. (2005). SUMO wrestling with type 1 diabetes. Journal of molecular medicine (Berlin, Germany), 83(7), 504–513.

    CAS  Google Scholar 

  • Li, T., Huang, S., Dong, M., Gui, Y., & Wu, D. (2012). Prognostic impact of SUMO-specific protease 1 (SENP1) in prostate cancer patients undergoing radical prostatectomy. Urologic Oncology. doi:10.1016/j.urolonc.2012.03.007.

  • Li, X., Luo, Y., Yu, L., Lin, Y., Luo, D., Zhang, H., et al. (2008). SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis. Cell Death and Differentiation, 15(4), 739–750.

    PubMed  CAS  Google Scholar 

  • Liochev, S. I. (2013). Reactive oxygen species and the free radical theory of aging. Free Radical Biology and Medicine, 60, 1–4.

    PubMed  CAS  Google Scholar 

  • Ma, Q.-L., Yang, F., Rosario, E. R., Ubeda, O. J., Beech, W., Gant, D. J., et al. (2009). Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. The Journal of neuroscience : The Official Journal of the Society for Neuroscience, 29(28), 9078–9089.

    CAS  Google Scholar 

  • Mahajan, R., Delphin, C., Guan, T., Gerace, L., & Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell, 88(1), 97–107.

    PubMed  CAS  Google Scholar 

  • Manza, L. L., Codreanu, S. G., Stamer, S. L., Smith, D. L., Wells, K. S., Roberts, R. L., et al. (2004). Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chemical Research in Toxicology, 17(12), 1706–1715.

    PubMed  CAS  Google Scholar 

  • Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23(1), 134–147.

    PubMed  CAS  Google Scholar 

  • Matunis, M. J., Coutavas, E., & Blobel, G. (1996). A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. The Journal of cell biology, 135(6 Pt 1), 1457–1470.

    PubMed  CAS  Google Scholar 

  • May, J. M., & de Haën, C. (1979). Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. The Journal of biological chemistry, 254(7), 2214–2220.

    PubMed  CAS  Google Scholar 

  • McDoniels-Silvers, A. L., Nimri, C. F., Stoner, G. D., Lubet, R. A., & You, M. (2002). Differential gene expression in human lung adenocarcinomas and squamous cell carcinomas. Clinical cancer research : An Official Journal of the American Association for Cancer Research, 8(4), 1127–1138.

    CAS  Google Scholar 

  • McLennan, Y., Polussa, J., Tassone, F., & Hagerman, R. (2011). Fragile x syndrome. Current Genomics, 12(3), 216–224.

    PubMed  CAS  Google Scholar 

  • Melchior, F. (2000). SUMO–nonclassical ubiquitin. Annual Review of Cell and Developmental Biology, 16, 591–626.

    PubMed  CAS  Google Scholar 

  • Minty, A., Dumont, X., Kaghad, M., & Caput, D. (2000). Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. The Journal of Biological Chemistry, 275(46), 36316–36323.

    PubMed  CAS  Google Scholar 

  • Moore, D. J., Zhang, L., Dawson, T. M., & Dawson, V. L. (2003). A missense mutation (L166P) in DJ-1, linked to familial Parkinson’s disease, confers reduced protein stability and impairs homo-oligomerization. Journal of Neurochemistry, 87(6), 1558–1567.

    PubMed  CAS  Google Scholar 

  • Muller, S., Berger, M., Lehembre, F., Seeler, J. S., Haupt, Y., & Dejean, A. (2000). c-Jun and p53 activity is modulated by SUMO-1 modification. The Journal of Biological Chemistry, 275(18), 13321–13329.

    PubMed  CAS  Google Scholar 

  • Navascués, J., Bengoechea, R., Tapia, O., Vaqué, J. P., Lafarga, M., & Berciano, M. T. (2007). Characterization of a new SUMO-1 nuclear body (SNB) enriched in pCREB, CBP, c-Jun in neuron-like UR61 cells. Chromosoma, 116(5), 441–451.

    PubMed  Google Scholar 

  • Nisticò, R., Piccirilli, S., Cucchiaroni, M. L., Armogida, M., Guatteo, E., Giampà, C., et al. (2008). Neuroprotective effect of hydrogen peroxide on an in vitro model of brain ischaemia. British Journal of Pharmacology, 153(5), 1022–1029.

    PubMed  Google Scholar 

  • Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Molecular and Cellular Biology, 26(24), 9220–9231.

    PubMed  CAS  Google Scholar 

  • Okura, T., Gong, L., Kamitani, T., Wada, T., Okura, I., Wei, C. F., et al. (1996). Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. The Journal of Immunology, 157(10), 4277–4281.

    PubMed  CAS  Google Scholar 

  • Olzmann, J. A., Brown, K., Wilkinson, K. D., Rees, H. D., Huai, Q., Ke, H., et al. (2004). Familial Parkinson’s disease-associated L166P mutation disrupts DJ-1 protein folding and function. The Journal of Biological Chemistry, 279(9), 8506–8515.

    PubMed  CAS  Google Scholar 

  • Patel, V. P., & Chu, C. T. (2011). Nuclear transport, oxidative stress, and neurodegeneration. International Journal of Clinical and Experimental Pathology, 4(3), 215–229.

    PubMed  CAS  Google Scholar 

  • Ploia, C., Antoniou, X., Sclip, A., Grande, V., Cardinetti, D., Colombo, A., et al. (2011). JNK plays a key role in tau hyperphosphorylation in Alzheimer’s disease models. Journal of Alzheimer’s Disease : JAD, 26(2), 315–329.

    PubMed  CAS  Google Scholar 

  • Pulverer, B. J., Kyriakis, J. M., Avruch, J., Nikolakaki, E., & Woodgett, J. R. (1991). Phosphorylation of c-jun mediated by MAP kinases. Nature, 353(6345), 670–674.

    PubMed  CAS  Google Scholar 

  • Rhee, S. G., Kang, S. W., Jeong, W., Chang, T.-S., Yang, K.-S., & Woo, H. A. (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Current Opinion in Cell Biology, 17(2), 183–189.

    PubMed  CAS  Google Scholar 

  • Rodriguez, M. S., Dargemont, C., & Hay, R. T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. The Journal of Biological Chemistry, 276(16), 12654–12659.

    PubMed  CAS  Google Scholar 

  • Rui, H.-L., Fan, E., Zhou, H.-M., Xu, Z., Zhang, Y., & Lin, S.-C. (2002). SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. The Journal of Biological Chemistry, 277(45), 42981–42986.

    PubMed  CAS  Google Scholar 

  • Ruipérez, V., Darios, F., & Davletov, B. (2010). Alpha-synuclein, lipids and Parkinson’s disease. Progress in Lipid Research, 49(4), 420–428.

    PubMed  Google Scholar 

  • Ryu, J., Cho, S., Park, B. C., & Lee, D. H. (2010). Oxidative stress-enhanced SUMOylation and aggregation of ataxin-1: Implication of JNK pathway. Biochemical and Biophysical Research Communications, 393(2), 280–285.

    PubMed  CAS  Google Scholar 

  • Schneider Aguirre, R., & Karpen, S. J. (2013). Inflammatory Mediators Increase SUMOylation of RXRα in a JNK-Dependent Manner in Human Hepatocellular Carcinoma Cells. Molecular Pharmacology, 84(2), 218–226.

    PubMed  Google Scholar 

  • Sclip, A., Antoniou, X., Colombo, A., Camici, G. G., Pozzi, L., Cardinetti, D., et al. (2011). c-Jun N-terminal kinase regulates soluble Aβ oligomers and cognitive impairment in AD mouse model. The Journal of Biological Chemistry, 286(51), 43871–43880.

    PubMed  CAS  Google Scholar 

  • Shchemelinin, I., Sefc, L., & Necas, E. (2006). Protein kinases, their function and implication in cancer and other diseases. Folia Biologica, 52(3), 81–100.

    PubMed  CAS  Google Scholar 

  • Shin, J., Yu, S.-B., Yu, U. Y., Jo, S. A., & Ahn, J.-H. (2010). Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer’s disease. BMB Reports, 43(10), 704–709.

    PubMed  CAS  Google Scholar 

  • Shinbo, Y., Niki, T., Taira, T., Ooe, H., Takahashi-Niki, K., Maita, C., et al. (2006). Proper SUMO-1 conjugation is essential to DJ-1 to exert its full activities. Cell Death and Differentiation, 13(1), 96–108.

    PubMed  CAS  Google Scholar 

  • Singh, U., & Jialal, I. (2006). Oxidative stress and atherosclerosis. Pathophysiology: The Official Journal of the International Society for Pathophysiology/ISP, 13(3), 129–142.

    CAS  Google Scholar 

  • Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., & Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(40), 14373–14378.

    PubMed  CAS  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840.

    PubMed  CAS  Google Scholar 

  • Stankovic-Valentin, N., Deltour, S., Seeler, J., Pinte, S., Vergoten, G., Guérardel, C., et al. (2007). An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity. Molecular and Cellular Biology, 27(7), 2661–2675.

    PubMed  CAS  Google Scholar 

  • Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S. M. M., Takahashi, K., & Ariga, H. (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Reports, 5(2), 213–218.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Ishida, M., Komano, H., & Takahashi, H. (2008). SUMO-1 immunoreactivity co-localizes with phospho-Tau in APP transgenic mice but not in mutant Tau transgenic mice. Neuroscience Letters, 441(1), 90–93.

    PubMed  CAS  Google Scholar 

  • Tare, M., Modi, R. M., Nainaparampil, J. J., Puli, O. R., Bedi, S., Fernandez-Funez, P., et al. (2011). Activation of JNK signaling mediates amyloid-ß-dependent cell death. PLoS ONE, 6(9), e24361.

    PubMed  CAS  Google Scholar 

  • Trigueros-Motos, L., Gonzalez, J. M., Rivera, J., & Andres, V. (2011). Hutchinson-Gilford progeria syndrome, cardiovascular disease and oxidative stress. Frontiers in Bioscience (Scholar edition), 3, 1285–1297.

    Google Scholar 

  • Tsutsui, H., Kinugawa, S., & Matsushima, S. (2011). Oxidative stress and heart failure. American Journal of Physiology. Heart and Circulatory Physiology, 301(6), H2181–H2190.

    PubMed  CAS  Google Scholar 

  • Um, J. W., & Chung, K. C. (2006). Functional modulation of parkin through physical interaction with SUMO-1. Journal of Neuroscience Research, 84(7), 1543–1554.

    PubMed  CAS  Google Scholar 

  • Wang, L., & Banerjee, S. (2004). Differential PIAS3 expression in human malignancy. Oncology Reports, 11(6), 1319–1324.

    PubMed  CAS  Google Scholar 

  • Wang, C.-Y., Podolsky, R., & She, J.-X. (2006). Genetic and functional evidence supporting SUMO4 as a type 1 diabetes susceptibility gene. Annals of the New York Academy of Sciences, 1079, 257–267.

    PubMed  CAS  Google Scholar 

  • Wang, J., Wang, Y., & Lu, L. (2012). De-SUMOylation of CCCTC binding factor (CTCF) in hypoxic stress-induced human corneal epithelial cells. The Journal of Biological Chemistry, 287(15), 12469–12479.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. A., & Henley, J. M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. The Biochemical Journal, 428(2), 133–145.

    PubMed  CAS  Google Scholar 

  • Wislet-Gendebien, S., D’Souza, C., Kawarai, T., St George-Hyslop, P., Westaway, D., Fraser, P., et al. (2006). Cytosolic proteins regulate alpha-synuclein dissociation from presynaptic membranes. The Journal of Biological Chemistry, 281(43), 32148–32155.

    PubMed  CAS  Google Scholar 

  • Xu, Z., Lam, L. S. M., Lam, L. H., Chau, S. F., Ng, T. B., & Au, S. W. N. (2008). Molecular basis of the redox regulation of SUMO proteases: A protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation. FASEB journal : Official Publication of the Federation of American Societies for Experimental Biology, 22(1), 127–137.

    CAS  Google Scholar 

  • Xu, Y., Li, J., Zuo, Y., Deng, J., Wang, L.-S., & Chen, G.-Q. (2011). SUMO-specific protease 1 regulates the in vitro and in vivo growth of colon cancer cells with the upregulated expression of CDK inhibitors. Cancer Letters, 309(1), 78–84.

    PubMed  CAS  Google Scholar 

  • Yang, D. D., Kuan, C. Y., Whitmarsh, A. J., Rincón, M., Zheng, T. S., Davis, R. J., et al. (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature, 389(6653), 865–870.

    PubMed  CAS  Google Scholar 

  • Yang, X.-J., & Seto, E. (2008). Lysine acetylation: codified crosstalk with other posttranslational modifications. Molecular Cell, 31(4), 449–461.

    PubMed  CAS  Google Scholar 

  • Yoshikawa, T., Toyokuni, S., Yamamoto, Y., & Naito, Y. (2000). Free radicals in Chemistry, Biology and Medicine (pp. 580). UK: OICA International.

  • Yun, S.-M., Cho, S.-J., Song, J. C., Song, S. Y., Jo, S. A., Jo, C., et al. (2013). SUMO1 modulates Aβ generation via BACE1 accumulation. Neurobiology of Aging, 34(3), 650–662.

    PubMed  CAS  Google Scholar 

  • Zhang, F., & Chen, J. (2008). Leptin protects hippocampal CA1 neurons against ischemic injury. Journal of Neurochemistry, 107(2), 578–587.

    PubMed  CAS  Google Scholar 

  • Zhang, Y.-Q., & Sarge, K. D. (2008). Sumoylation of amyloid precursor protein negatively regulates Abeta aggregate levels. Biochemical and Biophysical Research Communications, 374(4), 673–678.

    PubMed  CAS  Google Scholar 

  • Zhang, F., Signore, A. P., Zhou, Z., Wang, S., Cao, G., & Chen, J. (2006). Erythropoietin protects CA1 neurons against global cerebral ischemia in rat: Potential signaling mechanisms. Journal of Neuroscience Research, 83(7), 1241–1251.

    PubMed  CAS  Google Scholar 

  • Zhao, J. (2007). Sumoylation regulates diverse biological processes. Cellular and Molecular Life Sciences : CMLS, 64(23), 3017–3033.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to any colleague whose work may have inadvertently been omitted. RN is supported by the Italian Ministry of Education.

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Feligioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feligioni, M., Nisticò, R. SUMO: a (Oxidative) Stressed Protein. Neuromol Med 15, 707–719 (2013). https://doi.org/10.1007/s12017-013-8266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8266-6

Keywords

Navigation